

International Journal of Engineering Research in Computer Science and

Engineering Engineering (IJERCSE) Vol 2, Issue 3, March 2015

 42

Finding Security Vulnerabilities in Web-

Applications with Static Analysis

[1]S.Senthilkumar,[2]V. Vignesh,[3]M.Sathya Prakash ,[4]K.Rejini

[1][2][3]B.E, IV year students , Department of Computer Science and Engineering
[4]Assistant Professor of Computer Science and Engineering, Anand Institute of Higher Technology, Chennai.

 Abstract — The security of Web applications has become increasingly important in the last decade. The Web based enterprise

applications deal with sensitive financial and medical data. Therefore the web applications are created by giving major preference

to security since highly confidential data need to be secured and it is also crucial to protect these applications from hacker attacks.

A recent study has exploited that attackers has been using two vulnerabilities methods to hack any web application that is SQL

INJECTION(SQLi) and XSS CROSS SCRIPTING(XSS).SQL injections are caused by unchecked user input being passed to a

back-end database for execution and Cross-site scripting occurs when dynamically generated Web pages display input that has not

been properly validated. The existing system finds all vulnerabilities matching a specification in the statically analyzed code. The

Results of our static analysis are presented to the user for assessment in an auditing interface and We also propose a static analysis

approach based on a scalable and precise points-to analysis. The extensive experimental results are congruent with the theoretical

analysis

Index Terms — SQL Injection, Cross-Site Scripting, Web Application Security, Detection of security attacks, Application Security

Prevention Techniques.

I. INTRODUCTION

A typical Web application accepts input from the user

browser and interacts with a back-end database to serve

user requests at same time they are implemented using

a number of server-side ex-cutable components, such as

CGI programs and HTML-embedded scripting code.

The research says that SQL (Structured Query

Language) Injection and Cross-Site Scripting (XSS) are

the two top most attacks identified to implement the
attacks. The users keep on inserting, querying and

updating data in these databases. For all these

operations a well-designed user interface is very

important. Sometimes there are possibilities of

existence of unchecked or unused input fields. The

attackers exploit through this way to attack a web

application. Such an attack may cause serious security

violations such as account hijacking and cookie theft.

XSS usually affects victim’s web browser on the client-

side where as SQL injection occurs in server side.

These vulnerabilities could be exploited by SQL

injection or XSS to gain control over the online web
application database. The feasible solution for

preventing SQL Injection requires keeping un-trusted

data separate from commands and queries. The

preferred option is to use a safe API (Application

Program Interface) which avoids the use of the

interpreter entirely or provides parameterized interface.

The solution adapted for XSS CROSS SCRIPTING

attack prevention is to keep un-trusted data separate

from active

browser content. In existing system the user neither can

identify which part of web-application has been

attacked nor which method has been used to attack the
web-application. But in the proposed system the user

themselves can identify where and how the attack has

happened. An efficient solution has been identified to

prevent attacks and it is enforced to provide security in

all environment of web applications. But The current

problem lies in the integration of these attack

prevention techniques in a practical environment and

the developers’ familiarities with injection attacks and

XSS attacks, and the use of these techniques.

I. RELATED WORK

 It is unfeasible to produce complex

applications without defects, and even when this
occurs, it is impossible to know it, prove it, and repeat it

systematically. Software developers cannot assure code

scalability and sustainability with quality and security,

even when security is defined from the ground up. One

International Journal of Engineering Research in Computer Science and

Engineering Engineering (IJERCSE) Vol 2, Issue 3, March 2015

 43

of the aspects that contribute to security problems

seems to be related to how bad different programming

languages are in terms of propensity for mistakes.
Clowes discussed common security problems related to

the easiness in programming with PHP and its features,

but this affects many other programming languages.

The choice of the type system (strong or weak) and the

type checking (static or dynamic) of the programming

language also affects the robustness of the software. For

example, a strong typed language with a static type

checking can help deliver a safer application without

affecting its performance. Scholte et al. presented an

empirical study on a large set of input validation

vulnerabilities developed in six programming

languages. However, that work focused on the
relationship between the specific programming

language used and the vulnerabilities that are

commonly reported, not going into details in what

concerns the typical software faults that originate

vulnerabilities, like we do in the present work. One of

the best practices to find software faults is to perform a

static analysis to the code. This is a labor intensive job,

usually done with automated tools, although they lack

the precision of the manual counterpart. To improve

them and to help predict software failures, a new defect

classification scheme was proposed. Another research
work proposed a security resources indicator that seems

to be strongly correlated with change in vulnerability

density over time. Web application vulnerabilities have

been addressed by recent studies from several points of

view, but without any code analysis. To overcome the

low level of detail of existing vulnerability databases,

some researchers proposed approaches based on the

market, instead of on software engineering. The

attacker’s perspective has also been of some focus in

the literature, but mainly through empirical data

gathered by the authors highlighting social networking
and what could be obtained from attacking specific

vulnerabilities. Some studies analyzed the attacks from

the victim’s perspective, including the proposal of a

taxonomy to classify attacks based on their similarities

and the analysis of attack traces from Honey Pots to

separate the attack types. There is, however, a lack of

knowledge about existing exploits and their correlation

with the vulnerabilities. To improve software quality,

developers need a deeper knowledge about the software

faults that must be mitigated. The underlying idea is

that knowing the root cause of software defects helps

removing their source, therefore contributing to the
quality improvement. Researchers at IBM developed a

classification scheme of software faults, intended to

improve the software design process and, consequently,

reduce the number of faults. It is the ODC and it is

typically used to classify software faults or defects after

they have been fixed and it is also broadly used by the
industry and researchers outside IBM.

A. Vulnerabilities And Programming Languages

 The Open Web Application Security

Project Report listed the 10 most critical web

application security risks, having SQLi at the top,

followed by XSS. Other studies also found XSS and

SQLi as the most prevalent vulnerabilities. Fig. 1

depicts the yearly percentage of disclosed XSS and

SQLi among all the causes of web application

vulnerabilities showing that they are increasing over
time. SQLi attacks take advantage of unchecked input

fields in the web application interface to maliciously

tweak the SQL query sent to the back-end database. By

exploiting an XSS vulnerability, the attacker is able to

inject into web pages unintended client-side script code,

usually HTML and JavaScript. SQLi and XSS allow

attackers to access unauthorized data (read, insert,

change, or delete), gain access to privileged database

accounts, impersonate other users (such as the

administrator), mimic web applications, deface web

pages, view, and manipulate remote files on the server,
inject and execute server side programs that allow the

creation of botnets controlled by the attacker, and so on.

Details on the most common vulnerabilities, including

SQLi and XSS, along with the reasons of their

existence, attacks,

best practices to avoid, detect, and mitigate them can be

found in many referenced works, such as. Many

programming languages are currently used to develop

web applications. Ranging from proprietary languages

(e.g., C#, VB) to open source languages (e.g., PHP,

CGI, Perl, Java), the spectrum of languages available
for web development is immense. Programming

languages can be classified using taxonomies, such as

the programming paradigm, the type system, the

execution mode, and so on. The type system,

particularly important in the context of the present

work, specifies how data types and data structures are

managed and constructed by the language, namely how

the language maps values and expressions into types,

how it manipulates these types, and how these types

correlate. Regarding the type system, they can be typed

versus untyped, static versus dynamic typed, and weak

versus strong typed. In particular, strong typed
languages provide the means to produce more robust

software, since a value of one type cannot be treated as

another type (e.g., a string cannot be treated as a

International Journal of Engineering Research in Computer Science and

Engineering Engineering (IJERCSE) Vol 2, Issue 3, March 2015

 44

number), as in weak typed languages. One of the

contributions of this work is to help understanding the

impact of the type system in the security of web
applications. This is of particular significance, as

critical security vulnerabilities like XSS and SQLi are

strongly related to the way the language manages data

types. For example, it is common to find attacks that

inject SQL code by taking advantage of variables that

supposedly should not be strings (e.g., numbers, dates)

as the type of the variable is determined based on the

assigned value. On the other hand, in strong typed

languages, this is not possible because the type of

variables is determined before runtime and the attempt

to store a string in a variable of another type raises an

error. However, this does not prevent the occurrence of
vulnerabilities in strong typed languages, but only by

taking advantage of string variables. In fact, although

Java is intrinsically a safe programming language and it

is a strong typed language, vulnerabilities can be found

in Java programs due to implementation faults.

B. Results And Discussion Of The

Vulnerability Field Study

 This section presents and discusses the
results of the field study. We used the Pearson product-

moment correlation

(statistically significant when P < 0:05) to see the

strength and direction of the relationship of two

variables. A positive correlation (positive r) indicates

that when one variable increases so does the other and a

negative correlation (negative r) indicates that when

one variable increases the other decreases. Strong

correlation is when r is between 1 and 0.5; medium

correlation when r is between 0.5 and 0.3; weak

correlation when r is lower than 0.3. The number of
samples is n.

II. SYSTEM REALISATION

A. Existing Approach

The security of web applications becomes a

major concern and it is receiving more and more

attention from governments, corporations, and the

research community. Cross-site scripting (XSS) and

SQL injection (SQLi), as these are two of the most

common and critical vulnerabilities found in web
applications. SQL input injection attacks may serve a

number of ends. Generally, they are preferred by

malicious users as a way to obtain restricted data from a

back end database or to embed malicious code onto a

web server that will in turn serve up malware to

unsuspecting clients.

B.Proposed Approach

In this paper, we propose an analysis of the

source code of the scripts used to attack the malicious

users. And developers to know about how these

vulnerabilities are really exploited by hackers. Its can

be used to make software developers and code

inspectors in the detection of such faults and are also

the foundation for the research of realistic vulnerability

and attack injectors that can be used to assess security

mechanisms, such as intrusion detection systems,
vulnerability scanners and static code analyzers.

Fig 3.1 Vulnerability Analysis Mechanism

III. IMPLEMENTATION

A. Weblog Construction

 Most information systems and business

applications built nowadays have a web front end and

they need to be universally available to clients,

employees, and partners around the world, as the digital

economy is becoming more and more prevalent in the

global economy. So, when we develop web application,

International Journal of Engineering Research in Computer Science and

Engineering Engineering (IJERCSE) Vol 2, Issue 3, March 2015

 45

we consider the security on that business sites. The

security of web applications becomes a major concern

and it is receiving more and more attention from
governments, corporations, and the research

community. Here, we develop the organization’s site

with that secure information, success formulae, account

details, partners secure information, employee details,

etc... And we want more security on this site.

B. Vulnerability Analysis

The Open Web Application Security Project

Report listed the 10 most critical web application

security risks, having SQLi at the top, followed by

XSS. Other studies also found XSS and SQLi as the
most prevalent vulnerabilities on web applications.

SQLi attacks take advantage of unchecked input fields

in the web application interface to maliciously tweak

the SQL query sent to the back-end database. By

exploiting XSS vulnerability, the attacker is able to

inject into web pages unintended client-side script code,

usually HTML and Java script. SQLi and XSS allow

attackers to access unauthorized data (read, insert,

change, or delete), gain access to privileged database

accounts, impersonate other users (such as the

administrator), mimic web applications, deface web
pages, view, and manipulate remote files on the server,

inject and execute server side programs that allow the

creation of botnets controlled by the attacker, and so on.

C. Defect Classification

This section presents the methodology to

obtain and classify the source code and the security

patches of the web applications of our field study. PHP

is the most widely used language present in web
applications, we used it for the weak typed

programming language study. Due to time constraints,

other programming languages like PERL could not be

considered. Given the high number of security

problems found, we only used six web applications:

PHP-Nuke (phpnuke.org), Drupal (drupal.org), PHP-

Fusion (phpfusion.co.uk), Word Press (wordpress.org),

phpMyAdmin (phpmyadmin.net), and phpBB

(phpbb.com). For the strong typed programming

languages, for which we found less security problems,

we used 11 web applications developed in Java, C#,

and VB: JForum (jforum.net), OpenCMS
(opencms.org), BlojSom

(sourceforge.net/projects/blojsom), Roller WebLogger

(rollerweblogger.org), JSPWiki (jspwiki.org), SubText

(subtextproject.com), Dot-NetNuke (dotnetnuke.com),

YetAnotherForum (yetanotherforum.net),

BugTracker.NET (ifdefined.com/bugtrackernet.html),
Deki Wiki (developer.mindtouch.com), and ScrewTurn

Wiki (screwturn.eu).

D. Attack Malicious Injector

We assumed that the information publicly

disclosed in specialized sites is accurate and that the fix

available by the developer of the web application solves

the stated problem. When the patch can fix both XSS

and SQLi, the corresponding fault type is counted for

both vulnerabilities. To correct a single vulnerability

several code changes may be necessary. We consider
all the changes as a series of individual fault type fixes,

because missing any of them makes the application

vulnerable. When a particular code change corrects

several vulnerabilities, each vulnerability corrected is

counted. When a single vulnerability affects several

versions of the application and the patch is the same for

all, then it accounts for a single fix.

CONCLUSION

We investigate the vulnerability of the web application
and analyze the strength of the programming language

used in the web application. Using this analysis

technique we can eliminate weak areas of the web

application. The major security threats faced in the

current scenario are SQL Injection and XSS attack and

this technique makes the web application more secured

towards those attacks.

FUTURE ENHANCEMENT

The future enhancement of this project will focus on

developing better models and on using additional event

streams (such as the system calls executed by server-
side ex-ecutables) to more completely characterize the

behavior of web-based systems.

REFERENCES

[1]Acunetix Ltd., “Is Your Website Hackable? Do a

Web Security Audit with Acunetix Web Vulnerability

Scanner,” http://www.acunetix.com/security-

audit/index/, May 2013.

[2]G. Alvarez and S. Petrovic, “A New Taxonomy of

Web Attacks Suitable for Efficient Encoding,”
Computers and Security, vol. 22,no. 5, pp. 435-449,

July 2003.

International Journal of Engineering Research in Computer Science and

Engineering Engineering (IJERCSE) Vol 2, Issue 3, March 2015

 46

[3]P. Anbalagan and M. Vouk, “Towards a Unifying

Approach in Understanding Security Problems,” Proc.

Int’l Symp. Software Reliability Eng., pp. 136-145,
2009.

[4]A. Avizienis, J.C. Laprie, B. Randell, and C.

Landwehr, “Basic Concepts and Taxonomy of

Dependable and Secure Computing,” IEEE Trans.

Dependable and Secure Computing, vol. 1, no. 1, pp.

11-33, Jan.-Mar. 2004.

[5]US-CERT Vulnerability Notes Database,

“Homepage,” http://www.kb.cert.org/vuls/, May 2013.

[6]R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J.
Halliday, D. Moebus, B. Ray, and M. Wong,

“Orthogonal Defect Classification—A Concept for In-

Process Measurement,” IEEE Trans. Software Eng.,vol.

18, no. 11, pp. 943-956, Nov. 1992.

[7]S. Christey, “Unforgivable Vulnerabilities,” Proc.

Black Hat Briefings, 2007.

[8] J. Christmansson and R. Chillarege, “Generation of

an Error Set That Emulates Software Faults,” Proc.

IEEE Fault Tolerant Computing Symp., pp. 304-313,
1996.

[9] S. Clowes, “A Study in Scarlet, Exploiting Common

Vulnerabilities in PHP Applications,”

http://www.securereality.com.au/

studyinscarlet.txt, 2013.

[10] T. Manjaly, “C# Coding Standards and Best

Practices,” http://

www.codeproject.com/KB/cs/c__coding_standards.asp

x, May
2013.

[11] J. Cohen, Statistical Power Analysis for the

Behavioral Sciences, second ed., Lawrence Erlbaum,

1988.

[12] M. Cukier, R. Berthier, S. Panjwani, and S. Tan,

“A Statistical Analysis of Attack Data to Separate

Attacks,” Proc. Int’l Conf. Dependable Systems and

Networks, pp. 383-392, 2006.

[13] A. Adelsbach, D. Alessandri, C. Cachin, S. Creese,
Y. Deswarte, K. Kursawe, J.C. Laprie, D. Powell, B.

Randell, J. Riordan, P. Ryan,W. Simmonds, R. Stroud,

P. Verissimo, M. Waidner, and A. Wespi, “Conceptual

Model and Architecture of MAFTIA,” Project IST-

1999-11583,

https://docs.di.fc.ul.pt/jspui/bitstream/10455/
2978/1/03-1.pdf, 2003.

[14] Dotnet Spider, “C# Coding Standards and Best

Programming

Practices,” http://www.dotnetspider.com/tutorials/

BestPractices.aspx, May 2013.

[15] J. Dura˜es and H. Madeira, “Emulation of

Software Faults: A Field Data Study and a Practical

Approach,” Trans. Software Eng.,vol. 32, pp. 849-867,

2006.

