International Journal of Engineering Research in Computer Science and
Engineering Engineering (IJERCSE) Vol 2, Issue 3, March 2015

##IFERP
Finding Security Vulnerabilities in Web-
Applications with Static Analysis

(s Senthilkumar, V. Vignesh,!M.Sathya Prakash /K Rejini
[L2BIB £ |V year students , Department of Computer Science and Engineering

I Assistant Professor of Computer Science and Engineering, Anand Instit

igher Technology, Chennai.

Abstract — The security of Web applications has become increasingly importan
applications deal with sensitive financial and medical data. Therefore the web applicati

back-end database for execution and Cross-site scripting occurs whé

been properly validated. The existing system finds all vulnerabi

analysis

Index Terms — SQL Injection, Cross-Site Scriptin
Prevention Techniques.

. INTRODUCTION
A typical Web application accept

a number of server-side X8l
CGI programs and
The research s

Language) Injec?;
the two top mosfFattack to_ imifilement the
attacks. The user, e[* d

i uerying al
updating data i e Ses roall t%
sign interface is

operations a ifell-
important. Someti t Lare p‘bili
r unusegsinput fi
is

y

existence of unchée
attackers exploit through to a
application. Such an attack May cause s?
violations such as account hijacking g@ ookie theft.
XSS usually affects victim’s web browiér on the client-
side where as SQL injection occurs in server side.
These wulnerabilities could be exploited by SQL
injection or XSS to gain control over the online web
application database. The feasible solution for
preventing SQL Injection requires keeping un-trusted
data separate from commands and queries. The
preferred option is to use a safe APl (Application

interface’and We
esults are

Q&
st
&

ecade. The Web based enterprise
eated by giving major preference

being passed to a
s display input that has not
w’%ﬂy analyzed code. The

propose a static analysis
gruent with the theoretical

ations frﬁ?lacke r attacks.
eb apEfc@ ion that is SQL

urity attacks, Application Security

Program Intej ') which avoids the use of the
interpreter entirely or provides parameterized interface.
e solution*adapted for XSS CROSS SCRIPTING
ttack @fevention is to keep un-trusted data separate
from detive

R

er content. In existing system the user neither can

Q-‘%ntify which part of web-application has been
tta

cked nor which method has been used to attack the
web-application. But in the proposed system the user
themselves can identify where and how the attack has
happened. An efficient solution has been identified to
prevent attacks and it is enforced to provide security in
all environment of web applications. But The current
problem lies in the integration of these attack
prevention techniques in a practical environment and
the developers’ familiarities with injection attacks and
XSS attacks, and the use of these techniques.
I. RELATED WORK
It is unfeasible to produce complex
applications without defects, and even when this
occurs, it is impossible to know it, prove it, and repeat it
systematically. Software developers cannot assure code
scalability and sustainability with quality and security,
even when security is defined from the ground up. One

42

#%IFERP

connecting engineers... developing researc h

of the aspects that contribute to security problems
seems to be related to how bad different programming
languages are in terms of propensity for mistakes.
Clowes discussed common security problems related to
the easiness in programming with PHP and its features,
but this affects many other programming languages.
The choice of the type system (strong or weak) and the
type checking (static or dynamic) of the programming
language also affects the robustness of the software. For
example, a strong typed language with a static type
checking can help deliver a safer application without
affecting its performance. Scholte et al. presented an
empirical study on a large set of input validation
vulnerabilities developed in six programming
languages. However, that work focused on the
relationship between the specific programming
language used and the wulnerabilities that are
commonly reported, not going into details in what
concerns the typical software faults that originate
vulnerabilities, like we do in the present work. One of
the best practices to find software faults is to perform a
static analysis to the code. This is a labor intensivi
usually done with automated tools, althou
the precision of the manual counter
them and to help predict software
classification sc
work proposéd
to be strapgly

density'o r plication vul
been ms%o

vie analysis. To

low Ieve of vg i
somelr ches based on. ‘Ug
market, ead ware enginee %

attacker’s perspec has so been of so
the literat thr

gathered by the authors hlg i
and what could be q
vulnerabilities. S 1es analyzed the attacks from
the victim’s perspéctive, including the proposal of a
taxonomy to classify attacks based on their similarities
and the analysis of attack traces from Honey Pots to
separate the attack types. There is, however, a lack of
knowledge about existing exploits and their correlation
with the vulnerabilities. To improve software quality,
developers need a deeper knowledge about the software
faults that must be mitigated. The underlying idea is
that knowing the root cause of software defects helps
removing their source, therefore contributing to the
quality improvement. Researchers at IBM developed a
classification scheme of software faults, intended to
improve the software design process and, consequently,

plrlcal data
sotial networking
om attacking specific

International Journal of Engineering Research in Computer Science and
Engineering Engineering (IJERCSE) Vol 2, Issue 3, March 2015

reduce the number of faults. It is the ODC and it is
typically used to classify software faults or defects after
they have been fixed and it is also broadly used by the
industry and researchers outside IBM.

A. Vulnerabilities And Programming Languages

The Open Web Application Security
Project Report listed the 10 most critical web
application security risks, having SQLi at the top,
followed by XSS. Other studies also found XSS and
SQLi as the most prevalent vulnerabilities. Fig. 1
depicts the yearly percentage of disclosed XSS and
SQLi among all the causes of b application
vulnerabilities showing that th i
time. SQL.i attacks take adv
fields in the web

acker is able to
ide script code,
d XSS allow
ad, insert,

(such @

i h appllcatlons%h web

pulate remote the server,

i rams that allow the

gg attacker, and so on.

Details on the on vulnerabilities, including
SQLi and %ong

with the reasons of their

exis
% ctlces to av0|d detect, and mitigate them can be
und in many referenced works, such as. Many
programming languages are currently used to develop
web applications. Ranging from proprietary languages
(e.g., C#, VB) to open source languages (e.g., PHP,
CGil, Perl, Java), the spectrum of languages available
for web development is immense. Programming
languages can be classified using taxonomies, such as
the programming paradigm, the type system, the
execution mode, and so on. The type system,
particularly important in the context of the present
work, specifies how data types and data structures are
managed and constructed by the language, namely how
the language maps values and expressions into types,
how it manipulates these types, and how these types
correlate. Regarding the type system, they can be typed
versus untyped, static versus dynamic typed, and weak
versus strong typed. In particular, strong typed
languages provide the means to produce more robust
software, since a value of one type cannot be treated as
another type (e.g., a string cannot be treated as a

43

#%IFERP

connecting engineers... developing researc h

number), as in weak typed languages. One of the
contributions of this work is to help understanding the
impact of the type system in the security of web
applications. This is of particular significance, as
critical security vulnerabilities like XSS and SQLi are
strongly related to the way the language manages data
types. For example, it is common to find attacks that
inject SQL code by taking advantage of variables that
supposedly should not be strings (e.g., numbers, dates)
as the type of the variable is determined based on the
assigned value. On the other hand, in strong typed
languages, this is not possible because the type of
variables is determined before runtime and the attempt
to store a string in a variable of another type raises an
error. However, this does not prevent the occurrence of
vulnerabilities in strong typed languages, but only by
taking advantage of string variables. In fact, although
Java is intrinsically a safe programming language and it
is a strong typed language, vulnerabilities can be found
in Java programs due to implementation faults.

B. Results And Discussion Of The
Vulnerability Field Study

ectw presents
dy*e used th
moment
(statisti‘Ea
strength
variable
that whernt.one
negafivaleorre %ndicates that wi
one varrable in

correlationgi r is between 1 an um
correlation he een § 0 3; weak
correlation when T71s Iower The number of

samples is n.
1. SYSTEI&QEALISATION
A. Existing Approach

The security of web applications becomes a
major concern and it is receiving more and more
attention from governments, corporations, and the
research community. Cross-site scripting (XSS) and
SQL injection (SQLi), as these are two of the most
common and critical wulnerabilities found in web
applications. SQL input injection attacks may serve a
number of ends. Generally, they are preferred by
malicious users as a way to obtain restricted data from a

International Journal of Engineering Research in Computer Science and
Engineering Engineering (IJERCSE) Vol 2, Issue 3, March 2015

back end database or to embed malicious code onto a
web server that will in turn serve up malware to
unsuspecting clients.

B.Proposed Approach

In this paper, we propose an analysis of the
source code of the scripts used to attack the malicious
users. And developers to know about how these
vulnerabilities are really exploited by hackers. Its can
be used to make software developers and code
inspectors in the detection of such faults and are also
the foundation for the research of realistic vulnerability
and attack injectors that can be used to assess security
mechanisms, such as intrusi n systems,
vulnerability scanners and st

FI% fault type

Web Application
(Content)

Text
Graphics S0
- injector
PIM h
storage Multimedia
X35
User Interactions i
- Forms

Fig 3.1 Vulnerability Analysis Mechanism

1. IMPLEMENTATION

A. Weblog Construction

Most information systems and business
applications built nowadays have a web front end and
they need to be universally available to clients,
employees, and partners around the world, as the digital
economy is becoming more and more prevalent in the
global economy. So, when we develop web application,

44

#%IFERP

connecting engineers... developing researc h

we consider the security on that business sites. The
security of web applications becomes a major concern
and it is receiving more and more attention from
governments, corporations, and the research
community. Here, we develop the organization’s site
with that secure information, success formulae, account
details, partners secure information, employee details,
etc... And we want more security on this site.

B. Vulnerability Analysis

The Open Web Application Security Project
Report listed the 10 most critical web application
security risks, having SQLi at the top, followed by
XSS. Other studies also found XSS and SQLi as the
most prevalent vulnerabilities on web applications.
SQLi attacks take advantage of unchecked input fields
in the web application interface to maliciously tweak
the SQL query sent to the back-end database. By
exploiting XSS vulnerability, the attacker is able to
inject into web pages unintended client-side script code,
usually HTML and Java script. SQLi and XSS
attackers to access unauthorlzed data (r

accounts |mpersonate other
administrator),
pages, view,7and
inject andgéxe
creatlorf betnets.co

C. Defeca
S section présents the method

O

obtain an lassify_the s ce code a ity
patches of *pllc ns 0 d study. PHP
is the most wi used present in web
applications, we us r the weak typed

programming lan g‘? udy Due to time constraints,
other programming languages like PERL could not be
considered. Given the high number of security
problems found, we only used six web applications:
PHP-Nuke (phpnuke.org), Drupal (drupal.org), PHP-
Fusion (phpfusion.co.uk), Word Press (wordpress.org),
phpMyAdmin (phpmyadmin.net), and phpBB
(phpbb.com). For the strong typed programming
languages, for which we found less security problems,
we used 11 web applications developed in Java, C#,
and VB: JForum (jforum.net), OpenCMS
(opencms.org), BlojSom
(sourceforge.net/projects/blojsom), Roller WebLogger
(rollerweblogger.org), JSPWiki (jspwiki.org), SubText

International Journal of Engineering Research in Computer Science and
Engineering Engineering (IJERCSE) Vol

2, Issue 3, March 2015

(subtextproject.com), Dot-NetNuke (dotnetnuke.com),
YetAnotherForum (yetanotherforum.net),
BugTracker.NET (ifdefined.com/bugtrackernet.html),
Deki Wiki (developer.mindtouch.com), and ScrewTurn
Wiki (screwturn.eu).

D. Attack Malicious Injector

We assumed that the information publicly
disclosed in specialized sites is accurate and that the fix
available by the developer of the web application solves
the stated problem. When the patch can fix both XSS
and SQLi, the corresponding fault type is counted for
both vulnerabilities. To correct a single vulnerablllty
several code changes may be

affects several
5 the same for

erability of *G&l‘b appllcatlon

rength ofst gfamming language
used i lg&ﬁ sing this analysis
technique we ch#{% te weak areas of the web
applicationé& ajor security threats faced in the
current sce

are SQL Injection and XSS attack and
chnlque makes the web application more secured

ﬁvards those attacks.

FUTURE ENHANCEMENT
The future enhancement of this project will focus on
developing better models and on using additional event
streams (such as the system calls executed by server-
side ex-ecutables) to more completely characterize the
behavior of web-based systems.

REFERENCES

[1]Acunetix Ltd., “Is Your Website Hackable? Do a
Web Security Audit with Acunetix Web Vulnerability
Scanner,” http://www.acunetix.com/security-
audit/index/, May 2013.

[2]G. Alvarez and S. Petrovic, “A New Taxonomy of
Web Attacks Suitable for Efficient Encoding,”
Computers and Security, vol. 22,no. 5, pp. 435-449,
July 2003.

45

#%IFERP

connecting engineers... developing research

[3]P. Anbalagan and M. Vouk, “Towards a Unifying
Approach in Understanding Security Problems,” Proc.
Int’l Symp. Software Reliability Eng., pp. 136-145,
2009.

[4]A. Avizienis, J.C. Laprie, B. Randell, and C.
Landwehr, “Basic Concepts and Taxonomy of
Dependable and Secure Computing,” IEEE Trans.
Dependable and Secure Computing, vol. 1, no. 1, pp.
11-33, Jan.-Mar. 2004.

[5]US-CERT Vulnerability Notes Database,
“Homepage,” http://www.kb.cert.org/vuls/, May 2013.

[6]R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J.
Halliday, D. Moebus, B. Ray, and M. Wong,
“Orthogonal Defect Classification—A Concept for In-
Process Measurement,” IEEE Trans. Software Eng.,vol.
18, no. 11, pp. 943-956, Nov. 1992.

[7]S. Christey, “Unforgivable Vulnerabilities,” Proc.
Black Hat Briefings, 2007.
an Error Set That Emulates So
IEEE Fault Tol
1996.

191 S. Flowe ,“A tu
Vulngra) i

http: urerealll . .au/

studyins i
[10] T anjaly,t C# ng Standards

Practices,”
jec / K*/c 6“&tandards asp

www.code
ane®

X, May
2013.
[11] J. Cohen, &glstlcal Power Analysis for the
Behavioral Sciences, second ed., Lawrence Erlbaum,
1988.

[12] M. Cukier, R. Berthier, S. Panjwani, and S. Tan,
“A Statistical Analysis of Attack Data to Separate
Attacks,” Proc. Int’l Conf. Dependable Systems and
Networks, pp. 383-392, 2006.

[13] A. Adelsbach, D. Alessandri, C. Cachin, S. Creese,
Y. Deswarte, K. Kursawe, J.C. Laprie, D. Powell, B.
Randell, J. Riordan, P. Ryan,W. Simmonds, R. Stroud,
P. Verissimo, M. Waidner, and A. Wespi, “Conceptual

International Journal of Engineering Research in Computer Science and
Engineering Engineering (IJERCSE) Vol 2, Issue 3, March 2015

Model and Architecture of MAFTIA,” Project IST-
1999-11583,
https://docs.di.fc.ul.pt/jspui/bitstream/10455/
2978/1/03-1.pdf, 2003.

[14] Dotnet Spider, “C# Coding Standards and Best
Programming

Practices,” http://www.dotnetspider.com/tutorials/
BestPractices.aspx, May 2013.

[15] J. Duraes and H. Madeira, “Emulation of
Software Faults: A Field Data Study and a Practical
Approach,” Trans. Software Eng.,vol. 32, pp. 849-867,
2006.

46

