
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 71

Optimal Solution for Fragment Allocation in

Distributed Database

[1]
 M.Kavitha

[2]
 Y.Pavithra

[3] P.Gayathri
[4]

 Chavala P V S Prudhvi
[1]

 Associate Professor
 [2][3][4]

Student
[1][2][3][4]Dept of CSE, Sri Venkateswara College of Engineering, Nellore

Abstract: -- The distributed data processing is an upstanding way to improve reliability, availability and pursuance of a database

system. In this paper we will concentrate on data allocation problem with the aim to persuade an optimal distribution of data in the

process of the distributed database architecture in interconnection with data fragmentation. Efficient allocation of fragments

requires a proportion between costs, performance and data distribution restrictions. The allocation of fragments is closely related

to the replication of data from distributed databases. In addition, we analyzed the cost of fragmentation and replication.

Key words and phrase: distributed databases, fragmentation architecture, allocation architecture, strategies, methods, cost analysis.

I. INTRODUCTION

Definition: A distributed database system consists of a

collection of sites, connected together via some kind of

communications network, in which:

1) Each site is a full database system site in its

own right, but

2) The sites have agreed to work together so that a

user at any site can access data anywhere in the

network exactly as if the data were all stored at

the user's own site.

Definition: It follows that a distributed database (DDB)

is really a kind of virtual database, whose component

parts are physically stored in a number of distinct "real"

databases at a number of distinct sites (in erect. it is the

logical union of those database) [4].

Definition: A distributed related database management

system (DDBMS) is a software system that manages a

distributed database while making the distribution

transparent to the user [1]. Distribution is normally

discussed solely in terms of the fragmentation and

replication of data. A data Definition: A distributed

database system consists of a collection of sites,

connected together via some kind of communications

network, in which:

1) Each site is a full database system site in its

own right, but

2) The sites have agreed to work together so that a

user at any site can access data anywhere in the

network exactly as if the data were all stored at

the user's own site.

Definition: It follows that a distributed database

(DDB) is really a kind of virtual database, whose

component parts are physically stored in a number of

distinct "real" databases at a number of distinct sites (in

erect. it is the logical union of those database) [4].

Definition: A distributed related database

management system (DDBMS) is a software system that

manages a distributed database while making the

distribution transparent to the user [1]. Distribution is

normally discussed solely in terms of the fragmentation

and replication of data. A data

2.1. Fragmentation design

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 72

Definition 2.1. Fragmentation. The system partitions the

relation into several fragments, and stores each fragment

at a different site. If a distributed database B is

partitioned this means that the parties P1; P2; :::; Pj, i 2 I,

I = 1; 2; :::; n which compose her form disjoint subsets:

B = fP1 [P2 [::: [Pjg,with fP1 \ ::: \ Pjg = ;:

The fragmentation is the partitioning of a global

relation R into fragments R1; R2; :::; Ri, containing

enough information to reconstruct the original relation R.

There are three basic rules that should be

looked at during the fragmentation, which ensure that the

database does not have semantic changes during

fragmentation, i.e. ensure consistency of the database

Completeness. If relation R is decomposed into

fragments R1; R2; :::; Rn, each data item that can be

found in R must appear in at least one fragment.

Reconstruction. It must be possible to define a relational

operation that will reconstruct R from the fragments.

Reconstruction for horizontal fragmentation is Union

operation and Join for vertical. Disjointness. If data item

di appears in fragment Ri, then it should not appear in

any other fragment.

Exception: vertical fragmentation, where primary key

attributes must be repeated to allow reconstruction. In

the case of horizontal fragmentation, data item is a tuple;

for vertical fragmentation, data item is an attribute.

2.1.1. Fragmentation strategies. Consider a relation

with scheme R. The fragmentation of R consists of

determining the number of fragments (subschema) Ri

obtained by applying an algebraic relation on R (as

operations on relations which show the logical properties

of data). In this context, the fragmentation of data

collection can be done in two ways:

a) Horizontal. The horizontal fragmentation of a

relation R is the subdivision of its tuples into subsets

called fragments, the fragmentation is correct if each

tuple of R is mapped into at least one tuple of the

fragments (completeness condition). An additional

disjointness condition, requiring that each tuple of R be

mapped into exactly one tuple of one of the fragments, is

often introduced in distributed database systems in order

to control the existence of duplication explicitly at the

fragment level (by having multiple copies of the same

fragment). The resulted fragments Ri have the same

scheme structure as well as collection R, but differ by

the data they contain and are resulted by applying a

selection on R.

Selection op(R) - denies a relation that Qcontains only

those tuples of R that satisfy the specified condition

(predicate p): op(a1; :::; an(R)). A horizontal fragment

can be obtained by applying a restriction: Ri =

gcondi(R). So we can rebuild the original relation by

union as follows: R = R1 [R2 [::: [Rk.

For example:

R1=3/4type=House (Property For Sale)

R2=3/4type=Flat (Property For Sale)

There are two versions of horizontal partitioning:

primary horizontal fragmentation of a relation is ac ieved

through the use of predicates denied on that relation

which restricts the tuples of the relation. derived

horizontal fragmentations is realized by using predicates

that are denied on other relations.

b) Vertical. It divides the relation vertically by

columns. The resulted fragments Ri contain only part

from the collection structure R. It keeps only certain

attributes at certain site and they contain the primary key

of the relation R to ensure that the restore is possible and

are resulted from the application of a projection

operation of relational algebra: Q a1; :::; an(R), where

a1; :::; an are attributes of the relation R.

The fragmentation is correct if each attribute of

the relation is mapped into at to be in the least one of the

attribute of the fragments; moreover, it must be possible

to reconstruct the original relation by joining the

fragments together R = R1 N R2 N ::: N Rn; in other

words, the fragments must be a lossless join

decomposition of the relation.

For example:

R1 = Q staff No, position, salary (Staff)

R2 = staff No, ¯first Name, last Name, branch No

(Staff)

c) Sometimes, only vertical or horizontal

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 73

fragmentation of a database scheme is in-sufficient to

distribute adequately data for some applications. Instead

it can be useful to be used to be implement mixed or

hybrid fragmentation. A mixed fragment from a relation

consists of a horizontal fragment that is vertically

fragmented, or a vertical fragment that is horizontally

fragmented. A mixed fragmentation is denied using

selection and projection operations of relational algebra:

¾p (Q a1; :::; an(R)) or Q a1; :::; an(¾p(R)).

The comparison of the related fragmentation

strategies is to be showed in the table

1. for each fragment of a relation R:

Condition C = True (all tuples are selected).

List (L = ATTRS(R)) = True

Security - data not required by local applications is not

restored, and consequently not available to unauthorized

users;

Performance of global applications that require data

from several fragments located at different sites many be

slower.

2.2. Allocation design.

A database is named distributed if any of its tables are

stored at dire rent sites; one or more of its tables are

replicated and their copies are stored at dire rent sites;

one or more of its tables are fragmented and the

fragments are stored at deferent sites; and so on. In

general, a database is distributed if not all of its data is

localized at a single site [6].

Definition 2.2. Replication

The system maintains several identical replicas

(copies) of the relation, and stores each replica at a

different site. The alternative to replication is to store

only one copy of relation r.

3. Cost analysis

Assume the set of sites is S = fS1; S2; :::; Spg. Let p

be the total number of sites, NRel be the total number of

relations, m be the total number of fragments, Nfrag be

the cardinality of the fragmented relation, n be the

number of fragments of the fragmented relation, Nrep be

the cardinality of each other (NRel ¡ 1) replicated

relations, Njoin be the cardinality of the joined relations,

k be the number of attributes in both fragmented and

replicated relations, Kjoin be the number of attributes

after joining the relations from any site, Kp be the

number of attributes to be projected,

CT comp be cost per tuple comparison, CTconc be the

cost per tuple concatenation, Tcost¡attr be transmission

cost per attribute, TCR be the replication transmission

costs, CPp¡attr be the cost per projected attribute.

4. Conclusion

The objective of a data allocation algorithm is to

determine an assignment of fragments at different sites

in order to minimize the total data transfer cost involved

in executing a set of queries. This is equivalent to

minimization of the average query execution time, which

has a primary importance in a wide area of distributed

applications. The fragmentation in a distributed database

management system increases the level of concurrency

and therefore system throughput for query processing.

Distributed databases have appeared as a necessity,

because they improve availability and reliability of data

and assure high performance in data processing by

allowing parallel processing of queries, but also reduce

processing costs.

REFERENCES

[1] R. Elmasri and S. Navathe, Fundamentals of database

systems (4th ed.), Boston: Addison-Wesley, 2004

[2] N.M. Iacob (Ciobanu), The use of distributed

databases in e-learning systems, Procedia Social and

Behavioral Sciences Journal 15 (2011), 3rd World

Conference on Educational Sciences - WCES 2011,

Bahcesehir University, Istanbul - Turkey, 03-07

February 2011, 2673{2677w York: Palgrave-Macmillan,

2004.

[3] P. Beynon-Davies, Database systems (3rd ed.), New

York: Palgrave-Macmillan, 2004.

[4] C.J. Date, An introduction to Database Systems (8th

ed.), Addison Wesley, 2003

[5] S. Rahimi and F.S. Haug, Distributed database

management systems: A Practical Approach, IEEE,

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 10, October 2016

 74

Computer Society, Hoboken, N. J: Wiley, 2010.

[6] M.T. Ozsu and P. Valduriez, Principles of

Distributed Database Systems (3th ed.), New York:

Springer, 2011.

[7]A. Silberschatz, H.F. Korth and S. Sudarshan,

Database System Concepts (6th ed.), McGraw-Hill,

2010.

