
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 11, November 2016

 177

Cuda Programming

[1]
 A.Naga Mani

[2]
 S.Prathyusha

[3]
G.Sai Lakshmi

[1][2][3]
Department of Information Technology,

Pragati Engineering College

Kakinada, India
[1]

 mani.anappindi1996@gmail.com
 [2]

 samatham.prathyusha95@gmail.com
 [3]

sailakshmi.grandhi@gmail.com

Abstract:-- Cuda is a technology that can make supercomputers personal. The soul of supercomputer is the body of gpu, a gpu is a

specially designed processor that helps 3D or 2D graphics from restoring from the microprocessor. Cuda Architecture includes a

unified shader pipeline, allowing each and every arithmetic logic unit (ALU) on the chip to be marshaled by a program intending

to perform general-purpose computations. Cuda enables effective advancement in computing performance by exploiting the

competency of the graphicsprocessing unit(GPU)

Keywords—Parallel computing;host;device; kernel;threads

I. INTRODUCTION

 The word CUDA stands for Compute Unified

DeviceArchitecture. Cuda is an application programming

interface (API) model created by NVIDIA and it is a

parallel computing platform. It helps software

programmers to use a CUDA-enabled graphics processing

unit (GPU) for general purpose processing which is an

approach known as GPGPU. The CUDA platform is a

software overlay that gives unambiguous access to the

GPU’s unacknowledged instruction set and parallel

computational elements for the execution of computer

kernels. The CUDA platform is designed to work with

programming languages such as C, C++ and

Fortran.CUDA gives developers access to the instruction

set and memory of the parallel dataprocessing elements in

GPUs.These features of the CUDA Architecture helps to

constitute a GPU that would transcend at computating

performance and graphical tasks.

II. HISTORY

A. History of CUDA’s GPU

 The GPU’s were described as graphical accelerating

supportor which supports only specific fixed function

pipelines. Started around late 1990’s the hardware became

progressively programmable, supreme in NVIDIA’s first

GPU in 1999.

B. History of CUDA

In 2003, a group of research team managed by Ian Buck

unveiled Brook, the first extensively followed

programming model extended C programming with data-

parallel design. Using these perceptions such as streams,

kernels and reduction operators, the Brook compiler and

runtime system disclosed the GPU to be a general-purpose

processor in a high level programming language. Most

eminently, Brook programs were not only simple to write

than hand tuned GPU code, they were seven times faster

than similar existing code. NVIDIA introduced CUDA in

2006, the world's first solution for general-computing on

GPUs. NVIDIA has released a stable version of CUDA in

October,2015.

III.CUDA ARCHITECTURE

 The CUDA platform is available to software

programmers through CUDA-accelerated libraries,

compiler directives such as OpenACC, and extensions to

industry-standard programming languages including C,

C++ and Fortran

Processing Flow of CUDA:

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 11, November 2016

 178

 Copies the data from main memory to GPU

memory.

 CPU guides the process to GPU.

 GPU executes parallelly in each core.

 Copies the result from GPU memory to main

memory.

IV.PROGRAMMING MODEL

A classic sequence of operations for a CUDA C

program is:

 Declares and allocates host and device memory.

 Initializes host data.

 Transfers data from the host to the device.

 Executes one or more kernels.

 Transfers results from the device to the host.

 A kernel is executed by a grid of thread blocks.

Threads from different blocks cannot cooperate. Parallel

portions of the application are executed on the device.

V.CUDA LIBRARY

CUDA’s library consists of

A. cuBLAS: BLAS operation

B. cuFFT: FFT opeartion

A. cuBLAS:

 Implementation of BLAS (Basic Linear Algebra

Subprograms) on top of CUDA driver:

 It allows approach to the computational resources

of NVIDIA’s GPU

The basic design of practicing the CUBLAS library is :

 Create matrix and vector objects in GPU memory

space;

 Fill them with data;

 Call the CUBLAS functions;

 Upload the results from GPU memory space back to

the host

B.cuFFT

 The Fast Fourier Transform (FFT) is a divide and

conquer algorithm for conveniently computing discrete

Fourier transform of complex or real-valued data sets.

 CUFFT is the CUDA FFT library

 Provides a smooth interface for computing parallel

FFT on an NVIDIA GPU

 Allows users to leverage the floating-point power

and parallelism of the GPU without having to develop a

custom, GPU-based FFT implementation

 NVIDIA has their own list of GPU-Accelerated

Libraries. Perhaps the most well-known are cuBLAS and

cuFFT due to the ubiquity of matrix computations and

FFTs in scientific programming. More recently, cuDNN

has gained significant traction in the machine learning

community.

 When it comes to pure programmer productivity,

three important CUDA libraries are worth mentioning.

Firstly, there is Thrust (Thrust - Parallel Algorithms

Library) which comes installed with the CUDA toolkit.

Thrust can be viewed as a CUDA analog of the C++

Standard Template Library (STL). It provides basic

parallel algorithms and data structures in an STL-esque

form. This is very useful for prototyping algorithms

without having to write lots of device code and CUDA

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 11, November 2016

 179

memory management boilerplate. Thrust also supports

some non-GPU backends, as it is really a parallel

algorithms library.

 Secondly, comes CUB (CUB: Main Page), which

stands for CUDA Unbound. CUB was designed

specifically for CUDA applications and as a result has

slightly more flexibility than Thrust. It's algorithms are

aggressively tuned to provide the best performance

possible. In addition to providing primitives that can called

from the host, CUB also provides block-wide and warp-

wide collective primitives that can be called from the

device.

VI. CUDA BUILT-IN DEVICE VARIABLES

 All _global _ and _device_ functions have

access to these variables

Dim3 gridDim:-

 Dimensions of the grid in blocks

blockDim:-

 Dimensions of the block in threads

Dim3 blockIdx:-

 Block index within the grid

Dim3 threadIdx:-

 Thread index within the block.

IX.MEMORY ADMINISTRATION

Host and device memory are independent quantities.

 DEVICE pointers points to GPU memory

May be passed to/from host code

May not be dereferenced in host code

 Host pointers point to CPU memory

May be passed to/from device code

May not be dereferenced in device code

 CUDA’s API (application programming

interface) for handling device memory

cudaMalloc(), cudaFree(), cudaMemcpy()

Similar to the C equivalents malloc(), free(),

memcpy()

VII. ADVANTAGES

 CUDA has many advantages over classical

general purpose computation on GPUs:

 Scattered reads

 Shared memory: - CUDA exposes a fast shared

memory region that can be shared amongst

threads.

 Faster downloads and readbacks to and from the

GPU

 Full support for integer and bitwise operations,

including integer texture lookups

VIII. DISADVANTAGES

 CUDA has several limitations over traditional

general purpose computation on GPUs:

 Threads should be running in groups of at least 32

for best performance, with total number of threads

numbering in the thousands.

 Exception handling is not supported in CUDA code

due to performance overhead that would be incurred

with many thousands of parallel threads running

 CUDA-enabled GPUs are only available from

NVIDIA.

IX.RESTRICTIONS

Kernels are C functions with some restrictions

 Can only access GPU memory

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 11, November 2016

 180

 Must have void return type

 No variable number of arguments (“var args”)

 Not recursive

 No static variables

 Function arguments automatically copied from

CPU to GPU memory

X.FUTURE WORK

 Accelerated rendering of 3D graphics

 Accelerated interconversion of video file formats

 Some of the industrial applications are:

 Bio Informatics

 Computational Chemistry

 Data Science

 Computational Finance

 Numerical Analytics

REFERENCES

[1] Abi-Chahla, Fedy (June 18, 2008). "Nvidia's

CUDA: The End of the CPU?". Tom's Hardware.

Retrieved May 17, 2015.. (references)

[2] Giorgos Vasiliadis; Spiros Antonatos; Michalis

Polychronakis; Evangelos P. Markatos; Sotiris Ioannidis

(September 2008). "Gnort: High Performance Network

Intrusion Detection Using Graphics Processors".

Proceedings of the 11th International Symposium on

Recent Advances in Intrusion Detection (RAID).

[3] "CUDA-Enabled Products" CUDA Zone. Nvidia

Corporation. Retrieved 2008-11-03.

[4] Nvidia CUDA Software Development Kit

(CUDA SDK) – Release Notes Version 2.0 for MAC OS

X.

[5] Manavski, Svetlin A.; Giorgio Valle (2008).

"CUDA compatible GPU cards as efficient hardware

accelerators for Smith-Waterman sequence alignment"

