
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 3, Issue 11, November 2016

 181

Efficient way of Migrating Docker Images

[1]
Shiva Kumar Pentyala,

[2]
Goutam Sanyal

[1][2]
 National Institute of Technology - Durgapur

[1]
shivakumar.pentyala@gmail.com

[2]
 nitgsanyal@gmail.com

Abstract: -- Docker is a tool designed to make it easier to create, deploy, and run applications by using containers. Containers allow

a developer to package up an application with all of the parts it needs, such as libraries and other dependencies, and ship it all out

as one package. Docker containers wrap a piece of software in a complete filesystem that contains everything needed to run: code,

runtime, system tools and system libraries – anything that can be installed on a server. This guarantees that the software will

always run the same, regardless of its environment. Migration of OS instances across distinct physical hosts is a useful tool for

administration of data centers and clusters. The main purpose of migrating is load balancing. It also provides for management,

maintenance and considerable reduction in energy consumed. In the process of migration, while the OSes run, we can achieve high

performances with minimal service failures. In this paper we will suggest an efficient approach to minimize the energy and time

required for container migration.

Keywords:-- Docker, Migration of OS instances, load balancing.

I. INTRODUCTION

 Docker is a bit like a virtual machine. But unlike a

virtual machine, rather than creating a whole virtual

operating system, Docker allows applications to use the

same Linux kernel as the system that they're running on and

only requires applications be shipped with things not already

running on the host computer. This gives a significant

performance boost and reduces the size of the application.

The key difference between containers and VMs is that

while the hypervisor abstracts an entire device, containers

just abstract the operating system kernel. Containers are the

products of operating system virtualization. They provide a

lightweight virtual environment that groups and isolates a

set of processes and resources such as memory, CPU, disk,

etc., from the host and any other containers. The isolation

guarantees that any processes inside the container cannot see

any processes or resources outside the containers. Building

of Docker Containers use Copy on Write strategy (CoW).

Any RUN commands you specify in the Dockerfile creates a

new layer for the container. In the end when you run your

container, Docker combines these layers and runs your

containers. Layering helps Docker to reduce duplication and

increases the re-use. This is very helpful when you want to

create different containers for your components. You can

start with a base image that is common for all the

components and then just add layers that are specific to your

component. Layering also helps when you want to rollback

your changes as you can simply switch to the old layers, and

there is almost no overhead involved in doing so. When you

create a new container, you add a new, thin, writable layer

on top of the underlying stack. This layer is often called the

“container layer”. All changes made to the running

container - such as writing new files, modifying existing

files, and deleting files - are written to this thin writable

container layer. The diagram(Figure 1)below shows a

container based on the Ubuntu 15.04 image.

Fig. 1 Container based on the Ubuntu 15.04 image

II. RELATED WORK

 All image and container layers exist inside the

Docker host‟s local storage area and are managed by the

storage driver. On Linux-based Docker hosts this is usually

located under /var/lib/docker/. The Docker client reports on

image layers when instructed to pull and push images with

docker pull and docker push. The command below pulls the

ubuntu:15.04 Docker image from Docker Hub.

$ docker pull ubuntu:15.04

15.04: Pulling from library/Ubuntu

1ba8ac955b97: Pull complete f157c4e5ede7: Pull complete

0b7e98f84c4c: Pull complete a3ed95caeb02: Pull complete

Digest:

sha256:5e279a9df07990286cce22e1b0f5b0490629ca6d1876

98746ae5e28e604a640e Status: Downloaded newer image

for ubuntu:15.04

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 3, Issue 11, November 2016

 182

 From the output, you‟ll see that the command

actually pulls 4 image layers. Each of the above lines lists an

image layer and its UUID or cryptographic hash. The

combination of these four layers makes up the ubuntu:15.04

Docker image. Each of these layers is stored in its own

directory inside the Docker host‟s local storage. If we make

changes to the Dockerfile and build the new image then

below diagram shows the shared layers and newly formed

layers. changed-ubuntu image does not have its own copies

of every layer. As can be seen in the Fig. 2 below, the new

image is sharing its four underlying layers with the

ubuntu:15.04 image.

Fig. 2 Comparision of new image with old ubuntu:15.04

image

 As you can see, the 94e6b7d2c720layer is only

consuming 12 Bytes of disk space. This means that the

changed-ubuntu image we just created is only consuming an

additional 12 Bytes of disk space on the Docker host - all

layers below the 94e6b7d2c720 layer already exist on the

Docker host and are shared by other images. This sharing of

image layers is what makes Docker images and containers

so space efficient.

 Images or containers can be migrated from one

machine to another using docker-save, where the image is

converted in to a .tar file and using docker-load in the

second machine we can retrieve the image from the tar file.

Docker-save wipes all the parent layers and creates a tar file.

By this approach if we have multiple applications with

common layer then this layer would be present in all the tar

files, thereby increasing the filesize that is migrated from

one system to another. So this approach is not efficient if we

want to migrate the containers with common layers to

another system in our local network. For example if we have

three applications which use a common base layer then the

migration of these applications on to an another system

using docker-save followed by docker-load involves the

transfer of common base layer three times.

Machine - 1

Machine – 2

 Generally to replicate an application we use docker

save in M1 and docker load in M2. Docker save creates a tar

file of an image (including base image). If we consider 3

applications of sizes x1 MB , x2 MB, x3 MB respectively

and a common base layer of size y MB then the migration of

these applications to another system involves an additional

transfer of 2y MB.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 3, Issue 11, November 2016

 183

Fig. 3 Overview of tar file sizes for different applications

 As shown in the Fig. 3, docker-save creates a tar

file irrespective of the common layers. There by leading to

an additional transfer of 2y MB, which consumes a lot of

time and energy.

III. PROPOSED APPROACH

 We can overcome the above mentioned problem by

untaring and removing the common layers that are preset on

both the machines and taring them back. This method

significantly decreases the size of the tar file to be migrated.

This approach is illustrated as below.

1. Untar the file and remove the base layer and tar it

back on Machine-1:

 Using „docker history <image name>‟ command

you can identify the base image UUID, which helps in

removing this base layer from the untared file. After the

removal of this base layer tar the files again. Generally, base

layer size will be greater than the remaining layers of that

image. So, concentrating primarily on base image would

give us the noticeable results.

2. Untaring the file and adding the base and tar it

back on Machine-2:

 Untar the file that was migrated from machine-1

and add the base layer that was already available on

Machine-2. Tar it back after adding the required base layer.

For simple scenario we considered that they share only base

layer as common. In future the same steps can be followed

for other common layers than base layer. Using this

approach we can decrease the size of the file that is to be

migrated to a considerable amount. This approach will be

highly beneficial for the users who are migrating the files in

a network without using Ethernet. Users who are using file

transfer protocols like SCP, FTP, RSync would be highly

benefited using our proposed approach.

IV. EXPERIMENT AND PERFORMANCE

EVALUATION

A. Time and Size Related:

 The experiment was performed between two

identical machines(M1 and M2), and each machine runs

Raspbian Jessie and Docker installed on them were used to

compare the time and energy consumed in migration of

Images from machine M1 to M2. The Machines were

equipped with Raspberry Pi-3 as hardware. We use OLSR

protocol to form a wireless ad hoc network. We performed

the experiment using three different containers for serving

applications named Below in TABLE I. Apache, Nginx,

MySQL. These three containers used base images of the

resin/rpi-raspbian, armbuild/Ubuntu and armbuild/debian

respectively. Three Applications were present in machine

M1 with following specifications –

Table I

Applications and Corresponding Base Image, Size

 We migrated the Images in two ways, one using

our method and other using docker-save method and we

observed time and energy consumed in migration in both the

methods and compared them. The below graph depicts the

time taken for each process of the migration of different

applications from M1 to M2.We used network protocol

called SCP to transfer files between the two machines.

Fig. 4 Application vs Time for Migration

 As shown in the Fig. 4 the time required for

Service Migration is significantly less for our method than

the docker-save method. The size of the files that are

migrated was also significantly decreased in our method.

Fig. 5 show the sizes of different tar files of the applications

that are to be migrated from M1 to M2 for our method and

docker-save method.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 3, Issue 11, November 2016

 184

Fig. 5 Application vs Size during Migration

B. Energy Related:

 The two Machines with hardware Raspberry Pi 3

has two wireless interfaces, one of which is for the OLSR

Ad-Hoc mesh and the other for acting as the wireless access

point. The OLSR Ad-hoc network connects the two

Raspberry Pi powered machines. The Pi 3‟s inbuilt Wi-Fi is

configured for OLSR and an Edimax USB Wi-Fi dongle is

configured for the access point to which the user connects to

access web services. Both the Pi runs Raspbian Jessie and

Docker installed in it. Fig. 6 show the experimental setup of

the proposed work that measures the current drawn by the

raspberry pi at a particular instant. We have used ADS1015

chip for Analog to Digital Signal conversion and it‟s easy to

use this chip with the Raspberry Pi using its I2C

communication bus. We used INA 169 chip for current

monitoring.

Fig. 6 Experimental setup of the proposed work to

measure Current

 The raspberry pi is booted up and once it reaches

its steady value of current this experiment is performed. We

used INA 169 to measure the current drawn by raspberry

pi. INA 169 is the high-side, unipolar, current shunt

monitor. ADS 1015 is used as Analog to Digital converter,

which converts analog signal into digital signal. From the

formula P=V.I, we obtain Power as V is constant and equal

to 5V.Area under Power-Time graph gives the energy

consumed over that time. We observed that docker-save

model approximately consumed 1527 KJ whereas our model

consumed only 798 KJ of energy. Therefore our model

saves approximately 729 KJ of energy.

Power vs Time for docker-save method

Power vs Time for our method:

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

 (IJERCSE)

 Vol 3, Issue 11, November 2016

 185

Power vs Time for both the methods:

V. CONCLUSION

 This study focuses on the techniques of Docker

container migration and how to improve it. To improve

migration time the amount of space needed to transfer

during migration must be minimized. This minimization is

achieved with the help of above approach. The Image

migration time and energy consumed reduced significantly

for different applications by 50% approximately.

 Acknowledgement

 Deepest gratitude would like to be delivered to all

those who have given advices and help on how to make this

work possible.

REFERENCES

[1] Chenying Yu1 and Fei Huan2 ,” Live Migration of

Docker Containers through Logging and Replay,” Shanghai

Jiao Tong University, China.

[2] Jake Roemer, Mark Groman, Zhengyu Yang,

Yufeng Wang, Chiu C. Tan, and Ningfang Mi,” Improving

Virtual Machine Migration via Deduplication,” Department

of Computer and Information Sciences, Temple University ‡

Department of Computer Science and Engineering, Lehigh

University, Department of Electrical and Computer

Engineering, Northeastern University.

[3] N. Kratzke, “A lightweight virtualization cluster

reference architecture derived from open source paas

platforms,” Open Journal of Mobile Computing & Cloud

Computing.

[4] Information on https:// https://docs.docker.com/

[5] C. C. Keir, C. Clark, K. Fraser, S. H, J. G. Hansen

, E. Jul, C. Limpach, I. Pratt, and A. Warfield, “Live

migration of virtual machines,” in In Proceedings of the 2nd

ACM/USENIX Symposium on Networked Systems Design

and Implementation (NSDI, 2005, pp. 273–286.

[6] F. Ma, F. Liu and Z. Liu,” Live virtual machine

migration based on improved pre-copy approach, “IEEE

International Conference on Software Engineering and

Service Sciences, IEEE Conference Publications, New

York, 2010, pp. 230-233.

[7] H. Jin, L. Deng, S. Wu, X. Shi and X. Pan,” Live

migration of virtual machines by adaptively compressing

memory pages,” Future Generation Comp. Syst., 38 (2014)

23-35.

[8] M. Sun and W. Ren, “Improvement on dynamic

migration technology of virtual machine based on Xen,”

International Forum on Strategic Technology, 2 (2013) 124-

127.

