
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 12, December 2016

 183

Simultaneous Multithreading for Superscalars

[1] Aishwarya P. Mhaisekar
[2] Shubham S. Bokilwar

 [3] Anup Pachghare

Jawaharlal Darda Institute of Engineering and Technology, Yavatmal, 445001

Abstract: — As the processor community is trying to approach high performance gain from memory. One approach is to add more

memory either cache or primary memory to the chip. Another approach is to increase the level of systems integration. Although

integration lowers system costs and communication latency,the overall performance gain to application is again marginal.In

general the only way to significantly improve performance is to enhance the processors computational capabilities, this means to

increase parallelism. At present only certain forms of parallelisms are being exploited .for ex .can execute four or more instructions

per cycle; but in practice, they achieved only one or two because, in addition to the low instruction level parallelism performance

suffers when there is little thread level parallelism so, the better solution is to design a processor that can exploit all types of

parallelism. Simultaneous multi-threading is processor design that meets these goals. Because it consumes both threads level &

instruction level parallelism.

Key words:--Parallelism, Simultaneous Multithreading, thread, context switching, Superscalar

I. INTRODUCTION

 In processor world, the execution of a thread is

a smallest sequence of programmed instructions that can

be managed by scheduler independently, which is a part

of a operating system. In most of the cases a thread is a

part or a component of a process. But if we see the

implementation of thread and processes, they both differ

between the operating systems. One process can contain

multiple threads; executing parallel and it share the

resources such as memory. But this doesn’t happen in

case of process.

The multithreading concept generally being

implemented in a systems having single processor by

time slicing. The CPU (Central Processing Unit)

switches between different software threads. This

switching is called as context switching. Due to this the

users perceive the threads and threads and tasks as

running in parallel.

Multithreading is mainly found in multitasking

operating systems. Multithreading is a widespread

programming and execution model that allows multiple

threads to exist within the context of one process. These

threads share the process's resources, but are able to

execute independently. The threaded programming

model provides developers with a useful abstraction of

concurrent execution. Multithreading can also be applied

to one process to enable parallel execution one

multiprocessingsystem. Multithreaded applications have

the following advantages, Responsiveness, Faster

execution , Lower resource consumption, Better system

utilization, Simplified sharing and communication,

Parallelization.

 Threads in the same process share the same

address space. This allows concurrently running code

to couple tightly and conveniently exchange data

without the overhead or complexity of an IPC. When

shared between threads, however, even simple data

structures become prone to race conditions if they

require more than one CPU instruction to update: two

threads may end up attempting to update the data

structure at the same time and find it unexpectedly

changing underfoot. To prevent this, One concept

reviewed in this paper that is Simultaneous

multithreading.

 Simultaneous multithreading (SMT) is a

technique for improving the overall efficiency

of superscalar CPUs with hardware multithreading.

SMT permits multiple independent threads of

executionto better utilize the resources provided by

modernprocessor architectures. The

name multithreading indicates multiple meanings,

because not only can multiple threads be executed

simultaneously on one CPU core, but also multiple

tasks (with different Page tables, different Task state

segments, different Protection rings, different IO

permissions, ...) are also running on the same core,

they are completely separated from each other.

 The technique is really an efficiency solution

and there is inevitable increased conflict on shared

resources, measuring or agreeing on the effectiveness of

the solution can be difficult.

https://en.wikipedia.org/wiki/Coupling_(computer_science)
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Race_condition#Computing
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Task_state_segment
https://en.wikipedia.org/wiki/Task_state_segment
https://en.wikipedia.org/wiki/Task_state_segment
https://en.wikipedia.org/wiki/Protection_ring
https://en.wikipedia.org/wiki/Task_state_segment#I.2FO_port_permissions
https://en.wikipedia.org/wiki/Task_state_segment#I.2FO_port_permissions
https://en.wikipedia.org/wiki/Task_state_segment#I.2FO_port_permissions

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 12, December 2016

 184

II. THREAD VS. PROCESS

Fig 1. Memory Protection Barrier in Process

 Processes are typically independent, while

threads exist as a component ofa process
[9]

.

 Processes carry considerably

more state information than threads, whereas

multiple threads within a process share process

state as well as memory and other resources
[9]

.

 Processes have separate address spaces,

whereasthreads share their address space
[9]

.

 Processes interact only through system-

provide inter-process

Communication mechanisms
[9]

.

 Context switching between threads in the same

process is typically faster than context switching

between processes
[9]

.

III. SINGLE THREADING

 In computer programming, single threading is

nothing but the processing of single command at a

time. The opposite of single threading is

multithreading. While it has beensuggested that the

term single threading is misleading, the term has been

widely used within the functional

programming community.

Fig 2.Working of Single and Multithreaded Processor

IV.MULTITHREADING

 The minimal requirement for a

multithreaded processor is the ability to get two or more

threads of control in parallel within the processor

pipeline –i.e. it must provide two or more independent

program counters –and a mechanism that triggers a

thread switch. Thread switch overhead must be very

low, from zero to only a few cycles. A fast context

switch is supported by multiple program counters and

often by multiple register sets on the processor chip.

The principle approaches to multithreaded processor

exits.

4.1. Interleaved Multithreading Technique –

 An instruction of another thread is fetched

and fed in to the execution pipeline at each processor

cycle
[1]

4.2.Block Multitheading Technique-

This instruction of a thread are executed successively

until an event occurs that may cause latency .this

event induces a context switch
[3]

4.3.Simultaneousmultithreading-

 The wide superscalar instruction issue is

combined with the multiple –context approach.

Instructions are simultaneously issued from multiple

threads to the execution units +960 of a superscalar

processor
[8]

.

https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Computer_storage
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Computer_data_processing
https://en.wikipedia.org/wiki/Command_(computing)
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 12, December 2016

 185

V. PROCESSES, KERNEL THREADS, USER

THREADS, AND FIBERS

Fig 3. Mapping between User and Kernel Thread

 Scheduling can be done at a kernel level or user

level, and multitasking can be done preemptively or

cooperatively. At the kernel level, a process contains one

or more kernel threads, which share the process's

resources, such as memory and file handles – a process is a

unit of resources, while a thread is a unit of scheduling and

execution. Kernel scheduling is typically uniformly done

preemptively or, less commonly, cooperatively
[11]

. At the

user level a process such as a runtime systemcan itself

schedule multiple threads of execution. If these do not

share data, as in Erlang, they are usually analogously

called processes, while if they share data they are usually

called (user) threads, particularly if preemptively

scheduled. Cooperatively scheduled user threads are

known as fibers; different processes may schedule user

threads differently. User threads may be executed by

kernel threads in various ways (one-to-one, many-to-one,

many-to-many).

 A process is a "heavyweight" unit of kernel

scheduling, as creating, destroying, and switching

processes is relatively expensive. Processes

own resources allocated by the operating system.

Resources include memory (for both code and data), file

handles, sockets, device handles, windows, and a process

control block. Processes are isolated by process

isolation, and do not share address spaces or file

resources. A kernel thread is a "lightweight" unit of

kernel scheduling. At least one kernel thread exists

within each process. If multiple kernel threads can exist

within a process, then they share the same memory and

file resources. Kernel threads are preemptively

multitasked if the operating system's process scheduler is

preemptive. Kernel threads do not own resources except

for a stack. The kernel can assign one thread to each

logical core in and can swap out threads that get blocked.

However, kernel threads take much longer than user

threads to be swapped
[10]

.

 Threads are sometimes implemented in user

space libraries, thus called user threads. The kernel is not

aware of them, so they are managed and scheduled

in user space.

 Fibers are an even lighter unit of scheduling

which are cooperatively scheduled: a running fiber must

explicitly beneficial to allow another fiber to run, which

makes their implementation much easier than kernel

or user threads. A fiber can be scheduled to run in any

thread in the same process. This permits applications to

gain performance improvements by managing

scheduling themselves, instead of relying on the kernel

scheduler
[10]

.

VI.THREAD AND FIBER ISSUES

6.1. Concurrency And Data Structures

 Threads in the same process share the same

address space. This allows concurrently running code

to couple tightly and conveniently exchange data without

the overhead or complexity of an IPC. When shared

between threads, however, even simple data structures

become prone to race conditions if they require more

than one CPU instruction to update: two threads may end

up attempting to update the data structure at the same

time and find it unexpectedly changing underfoot. Bugs

caused by race conditions can be very difficult to

reproduce and isolate
[11]

.

 To prevent this, threading application

programming interfaces(APIs)offer synchronization

primitives such as mutexes to lockdata structures against

concurrent access. On uniprocessor systems, a thread

running into a locked mutex must sleep and hence

trigger a context switch. On multi-processor systems, the

https://en.wikipedia.org/wiki/Runtime_system
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Handle_(computing)
https://en.wikipedia.org/wiki/Handle_(computing)
https://en.wikipedia.org/wiki/Handle_(computing)
https://en.wikipedia.org/wiki/Process_control_block
https://en.wikipedia.org/wiki/Process_control_block
https://en.wikipedia.org/wiki/Process_control_block
https://en.wikipedia.org/wiki/Process_isolation
https://en.wikipedia.org/wiki/Process_isolation
https://en.wikipedia.org/wiki/Process_isolation
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/Fiber_(computer_science)
https://en.wikipedia.org/wiki/Cooperative_multitasking
https://en.wikipedia.org/w/index.php?title=User_threads&action=edit&redlink=1
https://en.wikipedia.org/wiki/Coupling_(computer_science)
https://en.wikipedia.org/wiki/Inter-process_communication
https://en.wikipedia.org/wiki/Race_condition#Computing
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Synchronization_primitive
https://en.wikipedia.org/wiki/Synchronization_primitive
https://en.wikipedia.org/wiki/Synchronization_primitive
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Lock_(computer_science)

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 12, December 2016

 186

thread may instead poll the mutex in a spinlock. Both of

these may sap performance and force processors

in symmetric multiprocessing (SMP) systems to contend

for the memory bus, especially if the granularity of the

locking is fine
 [9]

.

 Although threads seem to be a small step from

sequential computation, in fact, they represent a huge

step. They discard the most essential and appealing

properties of sequential computation: understandability,

predictability, and determinism. Threads, as a model of

computation, are wildly non-deterministic, and the job of

the programmer becomes one of pruning that

nondeterminism.

6.2 Synchronization

 Since threads share the same address space and

the same resources, the programmer must be very careful

to avoid race conditions and other non-acceptable

behaviors. In order for data to be correctly manipulated,

threads will often need to rendezvous in time in order to

process the data in the correct order. Threads may also

require mutually exclusive operations (often

implemented using semaphores) in order to prevent

common data from being simultaneously modified or

read while in the process of modification. Careless use of

such primitives can lead to deadlocks
[7]

.

6.3 Scheduling

 For avoiding the problems like deadlocks one

concept called as Scheduling is used. Operating systems

schedule threads either preemptively or

cooperatively. Preemptive multithreading is generally

considered the superior approach, as it allows the

operating system to determine when a context

switch should occur. Cooperative multithreading, on the

other hand, relies on the threads themselves to release

control once they are at a stopping point. This can create

problems if a thread is waiting for a resource to become

available
[10]

.

 Until the early 2000s, most desktop computers

had only one single-core CPU, with no support

for hardware threads, although threads were still used on

such computers because switching between threads was

generally still quicker than full-process context switches.

In 2002, Intel added support for simultaneous

multithreading to the Pentium 4 processor, under the

name hyper-threading; in 2005, they introduced the dual-

core Pentium D processor and AMD introduced the dual-

coreAthlon 64 X2 processor.

VII. SIMULTANEOUS MULTITHREADING

Fig 4. How SMT works

 Multithreading is similar in concept

to preemptive multitasking but is implemented at the

thread level of execution in modern superscalar

processors
[2]

.

 Simultaneous multithreading (SMT) is one of

the two main implementations of multithreading, the

other form being temporal multithreading. In temporal

multithreading, only one thread of instructions can

execute in any given pipeline stage at a time. In

simultaneous multithreading, instructions from more

than one thread can be executed in any given pipeline

stage at a time. This is done without great changes to the

basic processor architecture: the main additions needed

are the ability to fetch instructions from multiple threads

in a cycle, and a larger register file to hold data from

multiple threads
[4]

. The number of concurrent threads

can be decided by the chip designers. Two concurrent

threads per CPU core are common, but some processors

support eight concurrent threads per core. Simultaneous

multithreading is a processordesign that meets this goal,

because it consumesboth thread-level and instruction-

levelparallelism. In SMT processors, thread-

levelparallelism can come from either

multithreaded,parallel programs or

individual,independent programs in a multiprogramming

workload. Instruction-level parallelismcomes from each

single program or thread.Because it successfully (and

simultaneously)exploits both types of parallelism, SMT

processors use resources more efficiently, and both

instruction throughput and speedups aregreater.

https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Granularity
https://en.wikipedia.org/wiki/Synchronization_(computer_science)
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Race_condition#Computing
https://en.wikipedia.org/wiki/Rendezvous_problem
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Semaphore_(programming)
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Preemptive_scheduling
https://en.wikipedia.org/wiki/Preemptive_multithreading
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Hardware_thread
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Pentium_4
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Pentium_D
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/Athlon_64_X2
https://en.wikipedia.org/wiki/Preemptive_multitasking
https://en.wikipedia.org/wiki/Temporal_multithreading

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 12, December 2016

 187

 Simultaneous multithreading adds minimal

hardware complexity to, and, in fact, is a straightforward

extension of, conventional dynamically scheduled

superscalars. Hardware designers can focus on building a

fast, single threaded superscalar, and add SMT’s

multithread capability on top.

 Figure 5 (a) shows a sequence from a

conventional superscalar. As in all superscalars, it is

executing a single program, or thread, from which it

attempts to find multiple instructions to issue each cycle.

When it cannot, the issue slots go unused, and it incurs

both horizontal and vertical waste
[5]

.

 Figure 5 (b) shows a sequence from a

multithreaded architecture, such as the Tera.

Multithreaded processors contain hardware state (a

program counter and registers) for several threads.The

primary advantage of multithreaded processors is that

they better tolerate long latency operations, effectively

eliminating vertical waste.

 SMT can recover issue slots lost to both

horizontal and vertical waste. We derived our SMT

model from a high-performance, out of- order;

superscalar architecture whose dynamic scheduling core

is similar to that of the Mips R10000.Simultaneous

multithreading needs no special hardware to schedule

instructions from the different threads onto the

functional units.However, should an SMT

implementation negatively impact either the targeted

processor cycle time or the time to design completion,

designers could take several approaches to simplify it.

VIII. SMT vs. MULTIPROCESSORS

Fig 5. Multiprogramming and Parallel workload

 SMT obtained better speedups than the

multiprocessors (MP2 and MP4), not only when

simulating the machines at their maximum thread

capability (eight for SMT, four for MP4, and two for

MP2), but also for a given number of threads. At

maximum thread capability, SMT’s throughput reached

6.1 instructions per cycle, compared with 4.3 for MP2

and 4.2 for MP4
[6]

.

 Speedups on the multiprocessors were hindered

by the fixed partitioning of their hardware resources

across processors, which prevents them from responding

well to changes in instruction- and thread-level

parallelism. Processors were idle when thread-level

parallelism was insufficient; and the multiprocessor’s

narrower processors had trouble exploiting large

amounts of instruction-level parallelism in the unrolled

loops of individual threads. An SMT processor, on the

other hand, dynamically partitions its resources among

threads, and therefore can respond well to variations in

both types of parallelism, exploiting them

interchangeably. When only one thread is executing,

(almost) all machine resources can be dedicated to it;

and additional threads (more thread-level parallelism)

can compensate for a lack of instruction-level

parallelism in any single thread[2]. To understand how

fixed partitioning can improve multiprocessor

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 3, Issue 12, December 2016

 188

performance, measured the number of cycles in which

one processor needed an additional hardware resource

and the resource was idle in another processor. (In SMT,

the idle resource would have been used.) Fixed

partitioningof the integer units, for both arithmetic and

memory operations was responsible for most of MP2’s

and MP4’s inefficient resource use. The floating-point

units were also a bottleneck for MP4 on this largely

floating-point-intensive workload. Selectively increasing

the hardware resources of MP2 and MP4 to match those

of SMT eliminated a particular bottleneck. However, it

did not improve speedups, because the bottleneck simply

shifted to a different resource. Only when we gave each

processor within MP2 and MP4 allthe hardware

resources of SMT did the multiprocessors obtain greater

speedups. However, this occurred only when the

architecture executed the same number of threads; at

maximum thread capability, SMT still did better. The

speedup results also affect the implementation of these

machines. Because of their narrower issue width, the

multiprocessors could very well be built with a shorter

cycle time[6]. The speedups indicate that a

multiprocessor’s cycle time must be less than 70% of

SMT’s before its performance is comparable.

Future Application

 This paper is reviewed to evaluate the

applicability and efficiency of Simultaneous

Multithreading (SMT) as the base architecture of a

network processor. Indeed, the SMT model inherently

allows the multiple parallel threads which must be dealt

with in network processor applications. In this paper, we

reviewed the architectural implications of network

applications on the SMT architecture. We reviewed that,

when executed as independent threads, applications

chosen from different network layers show an improved

Instructions Per Cycle (IPC) and cache behavior when

compared with the situation where the program executed

comes from a single network application. Finally, a new

architectural solution to cope with packet dependency is

reviewed.

REFERENCES

1. Alverson R. et al. (1990) The Tera Computer

System. In proc. Int. Conf. Supercomputing, Amsterdam,

The Netherland, June, pp. 1-6

2. K. Farkas et al., “The Multicluster Architecture:

Reducing Cycle Time Through Partitioning,” to appear

in Proc. 30th Ann.IEEE/ACM Int’l Symp.

Microarchitecture, IEEE Computer Society Press, Los

Alamitos, Calif., Dec. 1997.

3. Kreuzinger, J. and Ungerer, T. (1990) Context-

Switching techniques for decoupled multithreaded

processors. In proc. 25th Euromicro Conf. Milano, Italy,

September 4-7, pp 1:248-251. IEEE Computer Society

Press, Los Alamitos, CA.

4. R. Alverson et al., “The Tera Computer

System,” Proc. Int’l Conf. Supercomputing, Assoc. of

Computing Machinery, N.Y., 1990,pp. 1-6.

5. S. McFarling, “Combining Branch Predictors,”

Tech. Report TN- 36, Western Research Laboratory,

Digital Equipment Corp., Palo Alto, Calif., June 1993.

6. S. Palacharla, N.P. Jouppi, and J.E. Smith,

“Complexity-Effective Superscalar Processors,”

Proc. Int’l Symp. Computer.

7. T. Linholm and F. Yellin. The Java Vitual

Machine Specification. Addison Wesley, second edition,

1999.

8. Tremblay, M. et al. (2000) The

MAJCArchitecture, ACM, 1997, pp. 206-218.

architecture: a synthesis of Parallelism and

scalability.IEEE Micro, 20, 12-25.

