
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 3, March 2016

 205

A Distributed Collaborative Filtering Framework

for DHT-Based P2P Network

[1]
Partha Sarathi Chakraborty

[2]
Dr. Sunil Karforma

[1]
 Lecturer, University Institute of Technology

[2]
 Reader, Dept. of Computer Science,

[1][2]
 The University of Burdwan

[1]
 psc755@gmail.com

[2]
 sunilkarforma@yahoo.com

Abstract: Collaborative filtering is the most common technique for designing e-commerce recommender systems. Traditional

recommender systems based on collaborative filtering works basically in a centralized way. So they are not scalable for large

networks. In this paper we have designed a distributed collaborative filtering framework for a structured P2P network where user

profiles are distributed over the nodes of the network. At the same time, the computation for generating recommendation is also

distributed over the nodes. A distributed clustering layer has also been proposed to the framework to reduce the communication

overhead and at the same to make the system more scalable.

I. INTRODUCTION

 Collaborative filtering] [Resinck et. al. 1994],[

Herlocker et. al. 2000] is the most common approach for

designing e-commerce recommender systems. It works by

building a database of items with users’ opinions on them.

Then a specific user is matched against this database in order

to find her neighbors, those with whom she shares similar

tastes. Over the time demand for designing distributed

recommender systems are increasing due to several reasons.

First, as online users are growing over time, in case of

centralized solution, huge computational resources are

needed to be installed by the organization for generating

good quality recommendation. This can be avoided by

distributing the storage of rating data as well as computation

of the predicted rating among the nodes of the underlying

network. Second, one of the major challenges in designing

recommender system is to handle the sparsity problem.

[Weng 2009] provides a B2B solution for reducing this

problem by suggesting sharing of rating information among

various recommenders operating in the same domain. The

information enrichment will lead to produce recommendation

of high quality. Third, as have been mentioned in [Lam et.

Al. 2006], customers may not feel comfortable to share the

information regarding their personal choices with a central

authority. They may prefer to keep their profile in their local

computer due to privacy reason. As distributed recommender

system does not have any central authority it provides good

solution for the privacy issue. From another point of view,

the customer may doubt about the recommendation generated

by the organization. So, going one step further, customer may

wish to choose the algorithm also for generating the

recommendations.

II. RELATD WORK

[Miller et. al. 2004] introduced an item-based

collaborative filtering algorithm (they name it PocketLens)

for five different distributed environments. The central

server architecture stores ratings in a central server and

computation for model building and recommendation

generation is done in customer’s node. Random discovery

architecture and Transitive Discovery architecture uses the

protocol of Gnutella (www.gnutella.com) peer-to-peer

architecture for neighborhood selection. Latter has an

improvement over the previous one by learning of the

neighborhood incrementally as a result of entering new users

into the system. Their last reference architecture is based on

structured peer-to-peer network. Two Chord based schemes

are proposed. In the first scheme, each user’s pseudonym and

rating is stored in the network as a (key, value) pair. The

second scheme stores item identifier and the corresponding

rows of the item-item matrix in the nodes. In both the

schemes, a model is built gradually in the customer’s node

and computation for recommendation generation is made

locally-not it has been distributed.

[Weng 2009] advocates for cooperation of multiple

business organizations of similar nature and proposed a

distributed recommender system made of multiple

recommenders from different organizations. A user-based

random walk approach has been adopted by [Kermarrec

2010]. In a number of works [Oka 2004], [Wang 2006],

[Tveit 2001] distributed recommender systems have been

designed for P2P networks. Han et. al. [Han 2004] distribute

the rating data among the nodes of a DHT based overlay

network using buckets. Each bucket is identified by the

<item_id, rating_value> pair and contains user details of

those users who has rated the item with item_id by that score

(rating_value). They propose a heuristic algorithm for data

mailto:psc755@gmail.com
mailto:sunilkarforma@yahoo.com

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 3, March 2016

 206

integration from the network. They also propose significance

refinement (SR) and unanimous amplification (UA) for

improving accuracy and scalability of the system. [Sorge

2007] proposed a chord based implementation of item-based

collaborative filtering algorithm where security and privacy

issues have been considered.

III. CHORD ARCHITECTURE

Chord [Stocal et. al. 2001] is a distributed lookup up

protocol for peer-to-peer networks. It provides a mechanism

to identify a node which stores a particular key. Chord does

not store the data itself. To know the location of the data, the

key for that data value is passed to the lookup service which

identifies the node storing the key and the associated data.

Chord is fully distributed in the sense that every node has

equal importance and provides the same lookup service. The

lookup service is based on consistent hashing [Karger 1997],

[Lewin 1998]. Key and node identifiers are ordered in a

identifier circle modulo 2
m

where m is the length of the

identifiers. A key is assigned to a node whose value is same

as the key value or it is assigned to the next node in the

identifier circle. Figure x. shows an example chord ring

having 7-bit key identifiers and node identifiers. The key K5

and K20 is assigned to node N24 and key K60 is assigned to

N90.

To limit the number of nodes to be searched for

finding the location of a key, every chord node maintains a

finger table with at most m entries. The ith record in the

finger table (called ith finger) of node n contains three fields

called finger[i].start, interval and the successor of that finger.

The field finger[i].start refers node n+2
i-1

modulo 2
m
. interval

field designates the interval [finger[i].start, finger[i+1].start).

figure xx shows the lookup process originated at node N32

for key K15 stored in node N20. The use of finger table in

the lookup operation increases scalability and each key

lookup requires at most O(log(N)) messages.

IV. PROPOSED FRAMEWORK

A. Basic Framework

The general framework for distributed recommender system

based on chord protocol has been shown in figure 2.

Fig.2 Distributed Collaborative Filtering Framework

The user profiles are distributed among the peers of the

Chord network. The node where a user profile is stored is

determined by hashing the user id of that user. In addition to

the user profiles, a data structure called item table is

maintained for each individual item in the system. Location

of the item tables is determined by hashing the item id of the

corresponding item. Virtually two Chord rings are

maintained. One is a ring of identifiers for user-ids and other

is the ring of identifiers for the item-ids. Identifiers of both

the rings are mapped separately to the same set of physical

nodes. So, each node in the distributed system stores a set of

user profiles and a set of item tables. An item table stores

user-id of the users who purchased the corresponding item.

A. Algorithm for inserting a new rating,
jir ,

 Steps:

1. Using hashing, generate the identifiers for the

corresponding user
iU and the item

jI .

2. Following chord protocol identify the node where

the user profile is stored.

3. Insert the new rating in the user profile if the profile

exists. Otherwise create the new profile.

4. Using the identifier for item
jI locate the node

where the item table for
jI is stored.

5. Append user id of user
iU to the item table of

jI .

B. Algorithm for Recommendation generation

Originating node, that is the node of active user

starts the process. Suppose
aU needs

recommendation for
pI .

 Steps:

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 3, March 2016

 207

For each item,
iI rated by the active user,

aU -

1. Calculate hash value of
iI and send messege

 ipa IIU ,, to appropriate node.

2. Item table of that node will give the list of users who

rated
iI .

3. For each user
mU in the list, send

message mipa UIIU ,,, to node having profile

of Um.

(
aU is given in the message so that the

node can send result message directly to

originating node.)

4. Nodes return

message

)(),(,,, ,, mmimpmm UsdUmeanRRU

provided
mU has rated

pI .

(pmR , will be used in prediction

calculation,)(),(,, mmim UsdUmeanR

will be used in similarity calculation)

(
mU is used in gathering information of all

items for a single user)

5. Originating node can calculate similarity locally as

follows-

)(*)())(,))((,(),(UmsdUasdUmmeaniRmUameaniRaUUsim
sicommonitem

ma

6. N Nearest neighbors,
nniU are chosen.

7. Predicted rating is calculated locally as-

),(),(*)(,()(, UmUasimUmUasimUmmeanpRmUameanpRa

V. PERFORMANCE OF THE SYSTEM

In case of centralized systems, Mean absolute Error

is the most common metric for measuring the performance of

the recommender systems. As the same collaborative

filtering algorithm is used, the proposed system will exhibit

the same accuracy as the centralized system. The

improvement comes from mainly two angles-distributing the

storage of the user profiles and distributing the computation

of recommendation generation.

A. Communication Cost

Suppose there are n users and m items. If, on an

average, each user has rated αm items, then αm messages

will be sent to nodes for consulting the item tables. Again,

suppose, on an average, βn users have rated each of the

items, αm. So βn messages will be sent to nodes having

profile of those βn users. As a result βn result messages will

be sent back to originating node. Total communication cost is

αm + αm* 2βn or αm(1+2βn).

VI. EXTENSION TO THE BASIC FRAMEWORK

A. Reducing Communication Overhead and increasing

Scalability; Distributed Clustering Layer:

 The basic framework involves a large number of

message exchange among the nodes in the generating the

recommendation. To reduce this communication overhead

further, a distributed clustering layer can be added to the

framework. For example, a P2P version of the K-Means

algorithm [Bandyopadhyay et. al. 2006] can be used. The

distributed clustering algorithm groups the users into

different clusters and every node maintains the clustering

information. The clustering is done offline. Whenever an user

request for recommendation, the originating node builds a

complete list of other users who belongs to the cluster of the

active user and sends it as part of the request message to

other nodes. This not only reduces the local computations in

the first-level nodes but also limits the number of second-

level nodes to be communicated by the first level nodes.

VII. CONCLUSION

In this article, we propose a framework for

distributed collaborative filtering algorithm for a distributed

hash table (DHT) based P2P network where each peer stores

a fraction of the whole rating database in the form of a set of

user profiles. Other than that peers also maintain a data

structure named Itemtable which stores list of users rated for

a particular item in order to calculate the similarity among

users and predicted rating in a parallel and distributed way.

REFERENCES

1. [Bandyopadhyay et. al. 2006] Sanghamitra

Bandyopadhyay, Chris Giannella, Ujjwal Maulik, Hillol

Kargupta, Kun Liu, Souptik Datta: Clustering distributed

data streams in peer-to-peer environments. Inf. Sci.

176(14): 1952-1985 (2006)

2. [Herlocker et. al. 2000] J. Herlocker, J. A. Konstan, J.

Riedl, “Explaining Collaborative Filtering

Recommendations”, in Proceedings of ACM Conference

on Computer Supported Cooperative Work,

Philadelphia, PA, 2000.

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 3, March 2016

 208

3. [Karger 1997] Karger, D., Lehman, E., Leighton, F.,

Levine, M., Lewin, D., AND Panigrahy, R. Consistent

hashing and random trees: Distributed caching protocols

for relieving hot spots on the World Wide Web. In

Proceedings of the 29th Annual ACM Symposium on

Theory of Computing (El Paso, TX, May 1997), pp. 654–

663.

4. [Kermarrec 2010] A.-M. Kermarrec, V. Leroy, A. Moin,

and C. Thraves. Application of random walks to

decentralized recommender systems. Principles of

Distributed Systems, 2010.

5. [Lam et. Al. 2006] Shyong Lam, Dan Frankowski, and

John Riedl. Do you trust your recommendations? an

exploration of security and privacy issues in

recommender systems. In Gnter Mller, editor, Emerging

Trends in Information and Communication Security,

volume 3995 of Lecture Notes in Computer Science,

pages 14–29. Springer Berlin / Heidelberg, 2006.

6. [Lewin 1998] Lewin, D. Consistent hashing and random

trees: Algorithms for caching in distributed networks.

Master’s thesis,

7. [Han 2004] P. Han, B. Xie, F. Yang, and R. Shen, “A

scalable P2P recommender system based on distributed

collaborative f iltering,” Expert Systems

WithApplications, vol. 27, no. 2, pp.203-210 2003.

8. Department of EECS, MIT, 1998. Available at the MIT

Library, http://thesis.mit.edu/.

9. [Miller et. al. 2004] Bradley N. Miller, Joseph A.

Konstan, John Riedl: PocketLens: Toward a Personal

Recommender System. ACM Transactions on

Information Systems 22 (July 2004).

10. [Oka 2004] T. Oka, H. Morikawa, and T. Aoyama,

“Vineyard: A collaborativefiltering service platform in

distributed environment,” in SAINT-W ’04: Proceedings

of the 2004 Symposium on Applications and the

Internet- Workshops (SAINT 2004 Workshops).

Washington, DC, USA: IEEEComputer Society, 2004, p.

575.

11. [Resinck et. al. 1994] Resinck., P., Neophytos, I.,

Mitesh, S., Peter, B., John, R., 1994. GroupLens: An

Open Architecture for Collaborative Filtering of

Netnews. Proceedings of the 1994 ACM conference on

Computer Supported Cooperative Work, Chapel Hill,

North Carolina, United States, p.175-186.

12. [Sorge 2007] Sorge. C., A Chord-based Recommender

Sys tem, Local Computer Networks, 2007. LCN 2007.

32nd IEEE Conference on.

13. [Stocal et. al. 2001] Stocal, I., et al. (2001). Chord: a

scalable peer-to-peer lookup service for Internet

applications. In: ACM SIGCOMM, San Diego, CA,

USA, pp. 149–160.

14. [Tveit 2001] A. Tveit, “Peer-to-Peer Based

Recommendations for Mobile Commerce”, in

Proceedings of the International Workshop on Mobile

Commerce, Rome, Italy, 2001

15. [Wang 2006] J. Wang, J. Pouwelse, R. Lagendijk, and

M. R. J. Reinders, “Distributed collaborative filtering for

peer-to-peer file sharing systems,” in Proceedings of the

21st Annual ACM Symposium on Applied Computing

(SAC06), 2006.

16. [Weng 2009]

17. Weng, Soloman, Xu, Yue, Li, Yuefeng, & Nayak,

Richi (2009) Towards Information Enrichment through

Recommendation Sharing. In Cao, L (Ed.) Data Mining

and Multi-agent Integration. Springer, United States of

America, pp. 103-126.

