
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 3, March 2016

 All Rights Reserved © 2016 IJERCSE 340

Kibitzer: Media Recommendations using Big Data

Analytics
 [1]

 Ashesh Kumar Singh
 [2]

 Aditya Shetye
[3]

Sanket Nalavade
[4]

 Tarun Pable
 [5]

 Archana Shirke
[1]

 B.E., Student
[2]

 Professor
 [1][2][3][4][5]

Department of Information Technology

Fr. C. Rodrigues Institute of Technology, Vashi

Navi Mumbai

[1]
 User501254@gmail.com

[2]
 adityashetye04@gmail.com

[3]
 sanket.nalavade123@gmail.com

 [4]
 tarun150595@gmail.com

[5]
 archanashirke25@gmail.com

Abstract: Recommendation systems can be found all over the web, from e-commerce websites like Flipkart and Amazon to social

entertainment platforms like YouTube. All of them provide recommendations to users and have completely redefined the online

experience. Recommendation systems however need quality data to work with. This is where big data comes into the picture. The

volume, variety and velocity of big data provides the opportunity for greater user modeling, adaptation and personalization. The

idea here, is to explore this domain to give recommendations on entertainment media, more specifically – movies, music and books.

We propose a system that makes use of item-item similarities and matrix factorization together on existing datasets to recommend

items in multiple departments.

Keywords—Big data, Collaborative Filtering, Recommendations, item-item

I. INTRODUCTION

There are a number of applications which supply,

to their users, some form of recommendation. A lot of

times, users are presented with products, that they ―may

want to buy‖, movies they ―may want to watch‖, music

they ―may want to listen‖, books ―they may want to read‖

or people they ―may want to befriend‖. Such applications

make use of recommendation systems. Recommendation

systems (RSS) have become a part and parcel of one’s

internet experience. The goal of a recommender system is

to generate meaningful recommendations for some target

user, of items that might interest them. Considering an

online setting, say an e-commerce website which is almost

always filled with an overwhelming number of products,

its highly likely that a user may not have enough judgment

to appropriately select from a number of alternatives [1].

RSS are primarily directed towards such individuals. Now,

generating these recommendations requires processing of

ever increasing, fast flowing and often unstructured data

in an efficient manner. This is where big data can be made

use of. Big data is not a single market. Rather, it is a

combination of various technologies and techniques that

have evolved over time. Big data solutions enable

organizations to store, manage, and manipulate vast

amounts of data at the right speed and at the right time to

gain the right insights.

It’s convenient to simplify big data into the three

vs — volume, variety, velocity. However this can be

misleading and overly simplistic [2]. For example, one

may be managing a tiny volume of very complex data or

one may be processing a huge volume of very simple data,

neither of them may be handled equally well through

traditional techniques, tools and technologies. Even more

important are the value & veracity associated with the data.

Recommender systems are increasingly incorporating big

data into themselves to take advantages of the evolving

approaches in the area. The tools and techniques required

for such and investment in big data has relatively

decreased and this has further encouraged even the smaller

companies to go the extra mile [3]. As the world enters the

era of big data, the recommender systems face greatly

increased complexities. Previous computational models

and experience on data do not always hold well today,

thus, how to build an efficient and robust system has

become an important issue for many practitioners of such

systems.

Using various statistical models and algorithms,

RSS predict preference that users would give to a

product/service they had not yet considered [4].

Suggestions for books on amazon, movies on netflix,

music on soundcloud, friends on facebook are some real

world examples of the operation of industry-strength

recommender systems. The design of such RSS depends on

the domain and the particular characteristics of the data

available or collected. The system may have access to user-

specific and item-specific profile attributes such as

personal information and product descriptions respectively.

Recommender systems differ in the way they analyze these

data sources to develop notions of affinity between users

and items which can be used to identify what should be

recommended [5]. Collaborative filtering is one such way

mailto:adityashetye04@gmail.com
mailto:adityashetye04@gmail.com

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 3, March 2016

 All Rights Reserved © 2016 IJERCSE 341

which is the process of filtering for information or patterns

using techniques involving collaboration among multiple

agents, viewpoints, data sources, etc and has continually

attracted attention in this field.

In the sections that follow, we discuss some work

done in this field while providing an in-depth background

on some algorithms used under collaborative filtering

techniques since we incorporate those in our proposed

system. Finally we outline our proposed system and draw

conclusions.

II. RELATED WORK

 All recommendations at their lowest level,

whether it be in real world face-to-face interaction or on an

e-commerce portal are of two types – non-personalized and

personalized. Non-personalized recommendations are

independent of the customer, so each customer gets the

same recommendation. These could be average ratings of

products, new arrivals; trending or even handpicked and

are the simplest type of recommendations. Personalized

recommendations on the other hand are offered as a ranked

list of items [6]. In performing this ranking, RSS try to

predict what the most suitable products or services are,

based on the user’s preferences and other constraints. In

order to complete such a computational task, RSS collect

from users their preferences, which are either explicitly

expressed, e.g., as ratings for products, or implicitly

inferred by interpreting user actions. It is important to note

that these may not always be accurate and from a user's

perspective are just suggestions which may or may not be

the most optimal one for them. Nevertheless personalized

recommendations still are more preferable for a unique

user experience.

In their book recommender systems handbook

author francesco ricci, lior rokach and bracha shapira list

out a range of possible roles that a rs can play on behalf of

the service provider and the end user.

Functions of a rs from a service providers perspective:
1. Increase the number of items sold

2. Sell more diverse items

3. Increase the user satisfaction

4. Increase user fidelity

5. Better understand what the user wants

Functions of a rs from an end users perspective:
1. Find some good items

2. Find all good items

3. Annotation in context

4. Recommend a sequence

5. Recommend a bundle

6. Just browsing

7. Find credible recommender

8. Improve the profile

9. Express self

10. Help others

11. Influence others

As these various points indicate, the role of a rs

within an information system can be quite diverse [6]. This

diversity calls for the exploitation of a range of different

knowledge sources and techniques. We have already

discussed how big data can help when it comes to such

sources. As for techniques, the two major classes of RSS

are – cognitive filtering and collaborative filtering. We

discuss them in detail in the following paragraphs.

Cognitive filtering, more popularly know as

content-based techniques recommends items based on a

comparison between the content of the items and a user

profile. The content of each item is represented as a set of

descriptors or terms, typically the words that occur in a

document. The user profile is represented with the same

terms and built up by analyzing the content of items which

have been seen by the user. The similarity of items is

calculated based on the features associated with the

compared items [6]. For example, you have a blog with

numerous blog posts of varying topics as show n in figure.

1 where a specified user reads about a post written on the

topic linux, you could also suggest them posts written on

the topic opensource since those two posts have similar

material and are of interest to the user. Here the

recommendation is made solely based on the content

accessed by a single user. Another thing to note here is that

in this example we are considering the number of times a

particular target user has read blog posts on some topic,

this feedback is implict in nature but we could also

consider explicit feed back like ratings given by a single

user.

Blogs Articles read per

user (Elise)

 Similar content
(Linux)

Linux 11 Open Source

Open Source - Cloud Computing

Cloud Computing 9

Java Technology -

Agile 1 Ranked blogs

Fig. 1. Simple example of cognitive filtering [9]

 Relevance feedback, genetic algorithms, neural

networks, and the bayesian classifier are among the

learning techniques for learning a user profile [6][7][8].

The vector space model and latent semantic indexing can

both be used by these learning methods to represent

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 3, March 2016

 All Rights Reserved © 2016 IJERCSE 342

documents. Some of the learning methods also represent

the user profile as one or more vectors in the same

multidimensional space which makes it easy to compare

documents and profiles. Other learning methods such as

the bayesian classifier and neural networks do not use this

space but represent the user profile in their own way.

However these types of systems suffer from problem like

cold start, overspecialization and limitations of content

analysis [6]. The need of such systems to analyze the

actual contents of the item makes them somewhat

infeasible for adoption on a large scale where the content

may belongs to multiple domains and be tough to examine.

Collaborative Filtering is the most successful

recommendation technique to date and also widely

popular. Tapestry is one of the earliest implementations of

collaborative filtering-based recommender systems [10].

This system relied on the explicit opinions of people from a

close-knit community, such as an office workgroup. In a

typical scenario, there is a list of m users U = {u1, u2, u3, …

, um} and a list of n items I = {i1, i2, i3, … , in}. Each user ui

has a list of items

I
u i , which the user has expressed their

opinions about. Opinions can be explicitly given by the

user as a rating score, generally within a certain numerical

scale, say between 1 to 5 or can be implicitly derived from

purchase records, by analyzing timing logs, by mining web

hyperlinks and so on. Note that
I

u i
 ⊆ I and it is possible

for
I

u i to be a null-set, in which case it means that the

user has given no opinion yet. There exists a distinguished

user ua ∈ U active user for whom the task of a

collaborative filtering algorithm is performed. For

example, again taking up the blog where multiple users

read multiple blog posts on varying topics as shown in

Figure 2 we can make a clustering model for grouping

users together based on their taste and then suggests users

blog posts that other uses within the same cluster have read

but our target user hasn't. Here too we could consider

explicit feedback like rating for articles in place of number

of times users in a cluster reads an article.

Blogs

Articles read per user

Marc Megan Elise

Linux 13 3 11

OpenSource 10 - -

Cloud Compting 6 1 9

Java Technology - 6 -

Agile - 7 1

Cluster 1 2 1

Fig. 2. Simple example of collaborative filtering [9]

Now depending on the algorithm used

collaborative filtering techniques further breaks down into

two primary approaches memory-based and model-based

[12][13]. Memory-based algorithms utilize the entire user-

item database to generate a prediction [6]. These systems

employ statistical techniques to find a set of users, known

as neighbors, that have a history of agreeing with the target

user (i.e., they either rate different items similarly or they

tend to buy similar sets of items). Once a neighborhood of

users is formed, these systems use different algorithms to

combine the preferences of neighbors to produce a

prediction or top-n recommendation for the active user.

The techniques, also known as nearest-neighbor or user-

based & item-based collaborative filtering are more

popular and widely used in practice [14]. Model-based

methods build models based on modern machine learning

algorithms discovering patterns in the training data and

hence only need a subset of database [6]. Algorithms in

this category take a probabilistic approach and envision the

collaborative filtering process as computing the expected

value of a user prediction, given their ratings on other

items. Bayesian models, clustering models, and

dependency networks, all have been investigated

extensively under such model based collaborative filtering

algorithms [6]. Despite of its benefits and the

interestingness of recommendations offered, collaborative

filtering algorithms have challenges of dealing with spares

& noisy data, privacy issues and shilling attacks [11].

Many of these challenges are active research topics and

new findings show that they can be overcome in some way

or other [15][16].

Besides cognitive filtering and collaborative

filtering numerous other classes of RSS have come into

existence. These RSS classes are – demographic,

knowledge-based, community-based and hybrid. They are

discussed briefly below:

Demographic RSS recommend items based on

the demographic profile of the target user. In other words,

they take into consideration the structure of the population

that a particular user belongs to and accordingly makes

some appropriate recommendation [17][18]. The idea here

is that people from different demographic groups have

preference for different items. Such RSS could take into

consideration the age, gender, nationality of the user to

make recommendation. For example, the contents of

website could be arranged based on the age of the visitor.

Knowledge-based RSS recommend items based on specific

domain knowledge about how certain item features meet

target user's needs and preferences and, ultimately, how the

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 3, March 2016

 All Rights Reserved © 2016 IJERCSE 343

item is useful for the user. These RSS try to reason and can

be either case-based or constraint-based. Case-based

recommenders determine recommendations on the basis of

similarity metrics treating similarity of items as knowledge

or utility whereas constraint-based recommenders

predominantly exploit predefined knowledge bases that

contain explicit rules about how to relate customer

requirements with item features [19][20]. For example a

new portal using knowledge-based rs would show news

articles based on its knowledge of current happenings and

urgency.

Community-based RSS recommends items based

on the preferences of the target user's friends. This

technique follows the epigram ―tell me who your friends

are, and i will tell you who you are‖. [6][21]. These types

of RSS have seen a huge increase in implementation due to

the popularity of social networking sites like facebook,

google plus and twitter in the past few years. Community-

based RSS rely heavily on the social relations of users.

Hybrid RSS are actually the combination of any the above

mentioned techniques [6]. In its simplest form, only two

classes of RSS are combined but hybrid RSS may very

well be a combination of even three or more classes. This

combination is done with the believe that the advantages of

one class of recommenders can compensate for the

disadvantages of the other making the overall system more

robust and effective. For instance, collaborative filtering

methods suffer from new-item problems, i.e., they cannot

recommend items that have no ratings. This does not limit

content-based approaches since the prediction for new

items is based on their description (features) that are

typically easily available [16]. Hence we could combine

those to get recommendation for newer items.

Now that we have given some background on the working

of a rs, we can discusses some of the industrial RSS that

are used on a daily basis:
1. Apple's itunes, a digital store for music takes ratings

from each user’s playlists and compares the ratings
with those of other itune's users who also have rated
their own music colletion. Based on the abundant
file information, the system can finds out the taste of
the user, predict what else the user would like, and
recommend potential music items of interest. The
existing music recommender systems like the one of
itunes know nothing about the nature of music files.
They only rely on the rating values or the action of
users. Only depending on such statistic data has
limitations in finding more accurately matching
music files.

2. Amazon, an online shopping portal uses
recommendation algorithms to personalize the
online store for each customer. The recommendation
items are continuously being changed based on

customer interests. It easily detects what the
customer's job is, in what situation the customer is,
and to what area the customer's taste is changed, and
then, it suggests the precisely adequate items to the
customer. The system will need to observe user's
actions such as emails, coupons, friends & other
interesting people, and feedback about products.
Amazon is also a well known advocate of item-to-
item cf technique.

3. Netflix, a popular online digital video streaming and
rental service makes use of over 107 algorithms to
generate recommendations. This ensemble of these
algorithms results in a number of recommendations.
It is also famous for the having held competitions
that invite users to help improve their system.

4. Google playstore, which is a mobile app store for
getting apps, movies, music, magazines etc on android
devices (possibly) makes use of community and
demographic RSS. It is capable of giving
recommendations based on what apps are liked by a
user's contacts and also the popular ones in their
locality.

III. ALGORITHMS USED

There are a number of crude as well as state-of-

the-art algorithms that can be used in making a

collaborative filtering (cf) rs. Choosing the correct one

however involves a proper understanding of the purpose

and the available dataset. In this section we discuss item-

to-item model based algorithm and als model based matrix

factorization algorithm that we use in our system to make

recommendations.

 Item based similarity CF: In the algorithm, the

similarities between different items in the dataset are

calculated by using one of a number of similarity measures

like Correlation, and then these similarity values are used

to predict ratings for user-item pairs not present in the

dataset [22]. A general description of the algorithm is as

follows:

1. For every pair of Item ia and Item ib, find all the

people who rated both ia and ib.

2. Use these ratings to form a Item Ia vector and a

Item Ib vector.

3. Calculate the similarity between these two

vectors.

4. Whenever someone sees a Item, recommend the

Items most similar with it.

Users

Items

i1 i2 i3

u1 3 3 4

u2 3 - 2

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 3, March 2016

 All Rights Reserved © 2016 IJERCSE 344

u3 4 2 5

u4 - 3 -

u5 3 1 -

Table 1. user-item rating

For items i1 and i2, common raters are users u1, u3

and u5 . The two rating vectors are [3,4,3] & [3,2,1].

For items i2 and i3, common raters are users u1 and u3. The

two rating vectors are [3,2] & [4,5].

Taking cosine as a measure, similarity between items are

as follows:
Cosine (I u1 ,I u3)=0 .916698497028

Cosine (I u2 ,I u3)=0.952925780013

Hence for user u4, who has rated item i2 the algorithm

would recommend item i3 over i1.
 Alternating Least Square (ALS): Alternating

Least Squares is based on matrix factorization. The

intuition behind using matrix factorization to solve this

problem is that there should be some latent features that

determine how a user rates an item [11]. Hence, if we can

discover these latent features, we should be able to predict

a rating with respect to a certain user and a certain item,

because the features associated with the user should match

with the features associated with the item. ALS rotates

between fixing one of the unknowns Ia or Ub [23]. When

one is fixed the other can be computed by solving the least-

squares problem. This approach is useful because it turns

the problem into a quadratic one that can be solved

optimally. A general description of the algorithm for ALS

algorithm for collaborative filtering taken from Zhou et. al

is as follows:

1. Initialize matrix I by assigning the average rating

for an Item as the first row, and small random

numbers for the remaining entries.

2. Fix I, solve U by minimizing the error function.

3. Fix U, solve I by minimizing the error function

similarly.

4. Repeat Steps 2 and 3 until convergence.

IV. PROPOSED SYSTEM
 The proposed system will be an application

capable of providing cross domain recommendations to its

users using big data analytics. The system will be capable

of dealing with the accompanying challenges of volume,

velocity and variety that big data presents to provide

acceptable value and trustable veracity on

recommendations. This system is intended to be cross

domain with respect to movies, music and books.

 such existing systems are rare and also inaccurate.

A statistical survey was conducted and the results obtained

suggested that:

 About half of them could not make sense of the
usefulness of recommendations given.

 Most had not come across a single recommendation
system which suggests across multiple domains.

 Almost all of them had received bizarre or useless
recommendations at some or the other time.

 Almost all of them had received extremely
obvious recommendations at some or the other
time.

 Almost all of them had received extremely
obvious recommendations at some or the other
time.

The core system will be moldable and adaptable

due to having being based off cf in a way that would allow

it to be effortlessly employed by businesses or

organizations looking to provide interesting and useful

recommendations to their clients or users.

The system is composed three individual module

but are capable of working together to attain our goal of

giving recommendations. We have divided the task of data

collection, rating and filtering within these modules.

Keeping a modular structure also makes the system more

manageable since if a particular module needs some

changes it will effect components only within that

particular module in most cases and not others.

These individual modules are:

A) User interface module
 This module supplies the user interface for end

customers that are the people who have an account an are

logged in to obtain recommendations. A user can view

recommendations on the website, and give feedback. This

is available only to the front end consumer.

B) Data supplier module
 This module is only for getting relevant data into

the system. Since our system heavily depends on supplied

data, it becomes necessary to maintain a separate module

for explicitly dealing with the prepossessing which is

accessible only to the back-end users and not the

customers.

C) Recommendation module
This module is the one which does all the heavy

lifting since it is directly responsible for generating

Recommendations. This is used by both customers

(unknowingly) and the backend service providers.

Customer cannot do many operations, but their ratings and

other habits along with existing pointers are very important

to create a relevant recommendation. Users can only use

give rating operation. This subsystem has its part in user

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 3, March 2016

 All Rights Reserved © 2016 IJERCSE 345

interface only as a ―rating for this recommendation‖ part.

This provides feedback for improvements in our

recommendations. On the background of this subsystem,

suppliers can get customer profile and statistics.

A simplified diagram of the system with its various

functional components is given below:
Fig. 3. Architectural diagram

 The Detailed description of each of the smaller

components is as follows:

A. Web App

This component acts as the client front-end to our

whole underlying system for the end user. It is responsible

for getting basic user information such as their gender, age

and also get feedback on the recommendations given to

them. Besides this the users may also rate and browse

media recommendations that are made available to them.

This module also collects both explicit and implicit

feedback from the users.

B. Analyzer

It basically informs the algorithm engine what

kind of data is available to work with. The major role of

this system is to get new users started with basic

recommendations since they will surely not have any

history to go with.

C. Learner

This module collects data representative of the

user preferences and tries to generalize this data, in order

to construct the profile type. The generalization strategy is

able to infer a model of interests starting from items rated

on in the past. The output of this module is fed into the

filtering engine and plays a crucial role in getting what

users might be interested in.

D. Metadata Extractor

This modules works on a large set of media from

internal and external sources if metadata related to them is

not readily available. It basically deals with getting meta

data into the system to be worked on. This module would

also come in handy if at all in future there is a shift towards

a content-base backed CF hybrid system.

E. Content Optimizer

Not all metadata on music, movies and books are

useful in all possible use cases and moreover since only a

handful of these can be properly inferred, others can be

safely discarded. It is the job of this module to get rid of all

redundancies and keep only the useful attributes of the

original information. In an essence it it the preprocessor.

F. Algorithm engine

This is the central module in the overall system

and gets its input from multiple modules namely the

learner, and optimizer. Its job is to give raw

recommendations by performing initial Big Data analytics

in two steps.

In the first step, it uses Item-Based similarity CF

algorithm to display a list of items similar to those that the

user has positively rated in the past.

Measures like Correlation, Regularized Correlation,

Cosine and Jaccard are used to evaluate item similarities

using the following mathematical formulas:

Corr (A,B)=
n∑ AB−∑ A∑ B

√n∑ A
2
−(∑ A)

2
√n∑ B

2
−(∑B)

2

RegCorr (A,B)=
n

n+n'
×Corr (A,B)+(1−

n

n+n')×PriorCorr

Cosine (A,B)=
∑ AB

‖ A‖‖B‖
Jaccard (A,B)=

A∩B

A∪B
Where,

 A and B are item pair rating vectors n is the size of

vector. Corr and RegCorr stand for Correlation and

Regularized Correlation respectively.

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 3, March 2016

 All Rights Reserved © 2016 IJERCSE 346

 In the second step CF algorithm, ALS is used to give

recommendations on movies that are even more

interesting.

 Additionally an alternate version of Item-Based

similarity CF algorithm is also employed to find the

most dissimilar items as to the user's liking and such

items are removed if present from the combined

result of the above generated recommendation set to

further improve the quality and generate a final raw

recommendations.

 The reason for performing Item-Based similarity CF

first is that it doesn't needs to be done often and

comparatively takes less time than ALS. This allows us

to have less waiting time to give personalized

recommendations.

G. Filtering engine

Up until now the the raw recommendations are

only mapping of products to other products and users, not

to specific users. This module selects those items that have

high likelihood of being preferred by the user. It makes

use of the learner module input to look for the closest

match based on their profile.

H. Ranking engine

Raw recommendations cannot be presented to

users due to the limits of representation. It is possible that

due to a high number of matches a number of

recommendation could be made to a user. But doing it all

at once would be overwhelming and this approach also

carries a risk factor if those recommendations don’t get

good results.

I. Some limitations:

1. Our system is not suitable for extremely spare datasets

where items have very few raters in common.

2. It may take a while before new recommendations

become available to the user based on their recent

behavior.

3. Our system won't take into account the implications of

biased/incorrect user feedback and assumes that all

user feedback on the quality of recommendations

provided as well as the items on the webapp are

genuine. The system is susceptible to shelling attacks

but measure can be taken to minimize it.

V. APPLICATIONS

 Aside from its theoretical contribution our system is

generally aimed at educating and practically improving

commercial RSS in a feasible manner so that all groups of

users can take advantage of it. These aspects are relevant to

different stages in the life cycle of a RS, namely, the

design of the system, its implementation and its

maintenance and enhancement during system operation

and upgrade.

Based on specific application domains, we can define two

major application domain for our recommender system:

1. Entertainment - recommendations for movies,

music, books, TV.

2. E-commerce - recommendations for consumers of

products to buy such as books, cameras, PCs etc.

VI. CONCLUSION

This system is designed to provide media

recommendations using big data analytics. In this

document we have surveyed the state of the art on cross-

domain recommendation, revising approaches proposed in

different research areas, namely user modeling,

information retrieval, knowledge management, and

machine learning; aiming to characterize, classify and

compare such diverse approaches. We believe that hybrid

approaches can enhance the multi-domain user preference

space with further content-based and contextual

information, relations across domains.

REFERENCES

1) Resnick, Paul, and Hal R. Varian. "Recommender

systems." Communications of the ACM 40.3 (1997):

56-58.

2) Defining Big Data: Volume, Velocity, and Variety By

Judith Hurwitz, Alan Nugent, Fern Halper, and Marcia

Kaufman Part of the Big Data For Dummies Cheat

Sheet;

3) http://www.dummies.com/how-to/content/defining-

big-data-volume-velocity-and-variety.html

4) How Big Data is used in Recommendation Systems to

change our lives (15:n36);

http://www.kdnuggets.com/2015/10/big-data-

recommendation-systems-change-lives.html

5) The Right Recommendation System for Big Data,

pg2;

http://learn.fractalanalytics.com/rs/fractalanalytics/ima

ges/WP%20Big%20data%20recommendation.pdf

6) Melville, Prem, and Vikas Sindhwani. "Recommender

systems." Encyclopedia of machine learning. Springer

US, 2011. 829-838.

 International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 3, March 2016

 All Rights Reserved © 2016 IJERCSE 347

7) Ricci, Francesco, Lior Rokach, and Bracha Shapira.

Introduction to recommender systems handbook.

Springer US, 2011.

8) Pronk, Verus, et al. "Incorporating user control into

recommender systems based on naive bayesian

classification." Proceedings of the 2007 ACM

conference on Recommender systems. ACM, 2007.

9) Rocchio, Joseph John. "Relevance feedback in

information retrieval." (1971): 313-323.

10) M. Tim Jones, Recommender systems, Part 1:

Introduction to approaches and algorithms, IBM

Developerworks Library (2013).

11) Goldberg, David, et al. "Using collaborative filtering

to weave an information tapestry." Communications of

the ACM 35.12 (1992): 61-70.

12) Su, Xiaoyuan, and Taghi M. Khoshgoftaar. "A survey

of collaborative filtering techniques." Advances in

artificial intelligence 2009 (2009): 4.

13) Bell, Robert M., and Yehuda Koren. "Scalable

collaborative filtering with jointly derived

neighborhood interpolation weights." Data Mining,

2007. ICDM 2007. Seventh IEEE International

Conference on. IEEE, 2007.

14) Breese, John S., David Heckerman, and Carl Kadie.

"Empirical analysis of predictive algorithms for

collaborative filtering." Proceedings of the Fourteenth

conference on Uncertainty in artificial intelligence.

Morgan Kaufmann Publishers Inc., 1998.

15) Al Mamunur Rashid, Shyong K. Lam, George

Karypis, and John Riedl. "ClustKNN: a highly

scalable hybrid model-& memory-based CF

algorithm." Proceeding of WebKDD (2006).

16) Chirita, Paul-Alexandru, Wolfgang Nejdl, and Cristian

Zamfir. "Preventing shilling attacks in online

recommender systems." Proceedings of the 7th annual

ACM international workshop on Web information and

data management. ACM, 2005.

17) Melville, Prem, Raymond J. Mooney, and Ramadass

Nagarajan. "Content-boosted collaborative filtering for

improved recommendations." AAAI/IAAI. 2002.

18) Wang, Yuanyuan, Stephen Chi-fai Chan, and Grace

Ngai. "Applicability of demographic recommender

system to tourist attractions: a case study on trip

advisor." Proceedings of the The 2012

IEEE/WIC/ACM International Joint Conferences on

Web Intelligence and Intelligent Agent Technology-

Volume 03. IEEE Computer Society, 2012.

19) Mahmood, Tariq, and Francesco Ricci. "Towards

Learning User-Adaptive State Models in a

Conversational Recommender System." LWA. 2007.

20) Bridge, Derek, et al. "Case-based recommender

systems." The Knowledge Engineering Review 20.03

(2005): 315-320.

21) Felfernig, Alexander, and Robin Burke. "Constraint-

based recommender systems: technologies and

research issues." Proceedings of the 10th international

conference on Electronic commerce. ACM, 2008.

