
International Journal of Engineering Research in Computer Science and

Engineering (IJERCSE) Vol 3, Issue 5, May 2016

Method for Prediction of Resource Requirements

using Clone Detection Mechanism

[1]
Mohini Rai,

 [2]
Mrs. Rupali Bhartiya

 Shri Vaishnav Institute of Technology and Science, Indore (M.P.)
[1]

mohi36.rai@gmail.com,
[2]

rupalibhartiya@gmail.com

Abstract- Clusters, grids, and peer-to-peer (P2P) networks have emerged as popular paradigms for next generation parallel and

distributed computing. They enable aggregation of distributed resources for solving large-scale problems in science, engineering,

and commerce. In grid and P2P computing environments, the geographically distributed resources in multiple administrative

domains introduce a number of resource management challenges. The resource management and scheduling systems for grid

computing need to manage resources and application execution depending on either resource consumers’ or owners’ requirements,

and continuously adapt to changes in resource availability. So this offers a challenging field for research work all around the globe.

The principle propose is to give powerful asset necessity expectation system for the input guided employment displaying

instrument taking into account reproduction recognition. This paper proposes a clone mechanism for prediction of resource

requirements. This method compares the codes to find a similar code. [1]

Index Terms: Cryptography System, Distributed Network, Information Security system, Attribute Based Encryption (ABE),

Contention Based (CB-ABE)

I. INTRODUCTION

 Grid computing is the collection of computer

resources from multiple locations to reach a common goal.

The grid can be thought of as a distributed system with non-

interactive workloads that involve a large number of files.

Grid computing is distinguished from conventional high

performance computing systems such as cluster computing in

that grid computers have each node set to perform a different

task/application. Grid computers also tend to be more

heterogeneous and geographically dispersed (thus not

physically coupled) than cluster computers. Although a single

grid can be dedicated to a particular application, commonly a

grid is used for a variety of purposes. Grids are often

constructed with general-purpose grid middleware software

libraries. Grid sizes can be quite large.[2]

 So grid can be viewed as a very large-scale,

generalized distributed computing system that can scale to

Internet size environments with machines distributed across

multiple organizations and administrative domains. To meet

the needs of newly emerging applications grid must support

extensibility, co-allocation of resources, inter-operation of

systems with different administrative policies while

preserving autonomy and also economy of computations.

Supporting these issues lead to efficient data and resource

Management mechanisms. The main aim of the resource

management system (RMS) in a grid is to manage the pool of

resources that are available to the grid, i.e. the scheduling of

processors, network bandwidth, and disk storage etc.

Regarding the management of resources one major aspect is

to generate an efficient mapping between jobs and resources.

Jobs need to be assigned to suitable resources. Also a job

may be divided into subtasks and they may have varying

resource needs and fulfilling their resource requirements

needs to be addressed well. [3]

Fig-1: Clone based Flow details

 Resource management is one of the important areas

in grid computing research. One major objective of resource

management in a computational grid environment is to

allocate jobs to make efficient use of the computational

resources under different resource providers and, thereby,

achieve high performance of the jobs. Therefore,

performance analysis is also an important issue in grid

resource management. An integrated framework for

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 5, May 2016

performance-based resource management in computational

grid environment has been developed. The framework is

supported by a multi-agent system (MAS) which has been

developed using a firm software engineering approach based

on Gaia methodology. The MAS initially allocates the jobs

onto different resource providers based on a resource

selection algorithm. Later, during runtime, if performance of

any job degrades or quality of service cannot be maintained

for some reason (resource failure or overloading), the MAS

assists the job to adapt to the changed environment. [4]

 In modern distributed systems like grid jobs are

allocated to resources on the basis of the resource

requirements of each job. In most resource management

systems the task of determining the resource requirements of

a job lies with the user who prepares a JRL (Job Requirement

List), providing the resources needed by the job. This may

often lead to inaccuracy in estimation of resources for a job

i.e. it may lead to overestimation or underestimation of the

resource requirements as the user may have very little or no

idea about the resource requirements of the job. Due to this a

job with higher resource requirements may be allocated to

low-capacity resources causing degradation in performance

or a job with low resource requirements may be allocated to

resources with higher capability causing wastage of available

resources. Hence, resource requirements of a job must be

estimated and resources should be dynamically characterized

and allocated to the job on the basis of this estimation. So, an

automatic resource requirement prediction technique is

presented in this thesis based on feedback guided job

modelling scheme and clone detection technique.

II. LITERATURE SURVEY

The prediction engine requires two pieces of

information- the run time and resource consumption of

previously executed jobs that can be acquired using historical

data or monitoring services like MonALISA.. Based on these

the prediction engine will select the optimum resource that

will be least loaded after job scheduling and will take least

run time. The prediction engine will tell the planner about the

selected site. The planner will then map the abstract work

flow on to the selected site.

Many interesting scientific problems require the

(often compute-intensive) analysis of large amounts of data.

Here, the ability to harness distributed compute and storage

resources can be of great value. Furthermore, the naturally

parallelism inherent in many data analysis procedures makes

it feasible to use distributed resources efficiently. For

example, analysis of the many petabytes of data to be

produced by future high energy physics experiments will

require the harnessing of tens of thousands of processors and

hundreds of terabytes of disk space for holding intermediate

results. For various technical and political reasons,

assembling these resources at a single location appears

impractical. Yet the collective institutional and national

resources of the hundreds of institutions participating in those

experiments can provide these resources. [5]

For a non IT expert to use services in the Cloud is

more natural to negotiate the QoS with the provider in terms

of service-level metrics –e.g. job deadlines– instead of

resource level metrics –e.g. CPU MHz. However, current

infrastructures only support resource-level metrics –e.g. CPU

share and memory allocation– and there is not a well-known

mechanism to translate from service-level metrics to

resource-level metrics. Moreover, the lack of precise

information regarding the requirements of the services leads

to an inefficient resource allocation usually, providers

allocate whole resources to prevent SLA violations.

According to this, a novel mechanism to overcome this

translation problem using an online prediction system is

proposed which includes a fast analytical predictor and an

adaptive machine learning based predictor. How a deadline

scheduler could use these predictions to help providers to

make the most of their resources is also showed. Evaluation

shows: i) that fast algorithms are able to make predictions

with an 11% and 17% of relative error for the CPU and

memory respectively; ii) the potential of using accurate

predictions in the scheduling compared to simple yet well-

known schedulers.[6]

Contribution targets virtualized software as a service

(SaaS) providers that handle heterogeneous workloads. These

providers dedicate part of their resources to execute web

applications, and try to accommodate batch jobs in the

remaining resources. A prediction system to determine

minimum job resource requirements to be executed before its

deadline is proposed. One key innovation of the prediction

system is the usage of Machine Learning (ML) to enable the

translation from service-level metrics to resource

requirements

One of the important issues for proper usage of Grid

is selection of suitable resources for jobs. Precise estimation

of resource requirements for jobs is important in order to

ensure efficient use of Grid resources. This paper gives an

overview of an efficient job modeling technique for

allocation of jobs onto the resource providers in Grid. The

proposed job modeling depends on the feedback gathered

from the previous executions of different jobs. The paper

mainly focuses on the technical implementation details of

collection of hardware performance monitoring data using

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 5, May 2016

the PAPI tool. The performance monitoring data are later

used as feedback while analyzing the resource requirements

of the job.[7]

PRAGMA is supported by a multi-agent system

(MAS). It consists of four components: (i) Resource Broker

(ii) Job Controller (iii) Analyzer and (iv) Performance Tuner.

Every component consists of one or more agents. These

agents can communicate with each other within the

component or outside the component, if required. Within

PRAGMA, six types of agents are deployed; these are:

Broker Agent (BA), Resource Provider Agent (RPA), Job

Controller Agent (JCA), Job Execution Manager Agents

(JEMA), Analysis Agents (AA) and Tuning Agent (TA).

Analysis Agents are organized in a hierarchy and are

employed to carry out performance analysis of jobs at various

levels of the environment. [8]

III. PROBLEM STATEMENT

In existing system, the system used several

approaches. Template based approach was proposed to have

similar run times compared to the applications those have

nothing in common. Predictions of application run time can

be used to improve the performance of scheduling algorithms

and to predict how long a request will wait for resources.

There are two aspects of this approach- how to define

“similar” and how to generate predictions. Here search

techniques are used to determine those application

characteristics that yield the best definition of similarity for

the purpose of making predictions.

The general approach to defining similarity taken in

this method is to use characteristics such as job-type, queue-

type, number of nodes, user, maximum run time, submission

time, start time, run time etc to define templates that identify

a set of categories to which jobs can be assigned. The

characteristics include physical characteristics of the job

itself and also characteristics like “maximum run time” where

information is to be provided by the user. Once a set of

templates is defined (using a search process described later),

a set of applications is categorized by assigning each

application to those categories that match the characteristics

of a template. Categories need not be disjoint, and hence the

same job can occur in several categories. If two jobs fall into

the same category, they are judged similar; those that do not

coincide in any category are judged dissimilar. [9]

Prediction method is used for generating runtime

predictions. The input to this method is the set of templates T

and a set of jobs W for which runtime predictions are

required. In addition to the characteristics described in the

preceding section, a maximum history, type of data to store,

and prediction type are also defined for each template. The

maximum history indicates the maximum number of data

points to store in each category generated from a template.

The type of data is either an actual run time, denoted by act,

or a relative run time, denoted by rel. A relative run time

incorporates information about user-supplied run time

estimates by storing the ratio of the actual run time to the

user-supplied estimate. [10]

IV. PROPOSED SOLUTION

In proposed system, the system using clone

detection for prediction of resource requirements. Clone is a

method for object duplication. In this system, first the coding

will be uploaded. After uploading the code prerpocessing will

be done. Then it compares the coding to find similar code.

Then excracts the code. And then it aggregates it. Classes

that want copying functionality must implement some

method to do so. To a certain extent that function is provided

by "Object. Clone ()".

Recognize the clones is not just satisfy of

programming advancement what's more, support. At that

point alter the clones utilized the refactoring strategy is one

of the proficient component for code clones. In this

exploration at first identify the clones in programming

framework and at that point utilized refactoring strategy to

settle the clones. Refactoring result is created in code with

upgraded viability and it is see as a preventive support action.

The refactoring strategy have five stages of techniques, these

are obliged to perform before applying refactoring in

programming framework. clone() acts like a copy

constructor. Typically it calls the clone() method of its super

class to obtain the copy, etc. until it eventually reaches

Object's clone() method. The special clone() method in the

class Object provides a standard mechanism for duplicating

objects. The class Object’s clone() method creates and

returns a copy of the object, with the same class and with all

the fields having the same values. The default

implementation of Object. Clone() performs a shallow copy.

When a class desires a deep copy or some other custom

behavior, they must perform that in their own clone() method

after they obtain the copy from the super class.

There are several different approaches towards clone

detection. Three of them are discussed here very briefly.

Metric based clone detection technique: In metric-based

approaches, different metrics (such as, number of lines of

source code, number of function calls contained) for code

fragments are retrieved and these metrics are compared

instead of comparing codes directly. An allowable distance

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 5, May 2016

(for instance, Euclidean distance) for these metrics can be

used to detect similar code. PDG based clone detection

technique: Here, the control flow graph and the data

dependency graph are used to generate the Program

Dependency graph (PDG). Then isomorphic sub graph

matching is done to detect clones from the PDGs. AST based

clone detection technique: In this technique, the source file is

parsed to generate its Abstract Syntax Tree using a parser of

the target language. All information of the job is contained in

the nodes of the parse tree. The AST matching is then done

using some tree-matching technique.

Fig-2: Proposed Architecture

In upload and Pre-processing, the system uploads

the code first. Then it starts the pre-processing stage. This is

the first phase of any clone detection process. It involves

removing non-useful parts from the source code like

comments and determining the comparison units of the target

source code. In Match detection phase, the transformed code

i.e. the metrics, PDGs and AST are used as input to a suitable

comparison technique to find a match between code

fragments. This comparison technique is done through three

stages 1) metrics matching, 2) PDG matching and finally 3)

AST matching. After this matching process, the system

extracts the code. This module retrieve the similar coding out

of total coding for further process that assigning the type and

for aggregation. Then the system assigns the type of the

coding. Then it aggregates the code. If a class has an entity

reference, it is known as Aggregation. Aggregation is used

for Code Reusability.

V. RESULT ANALYSIS

In this case the running time varies mainly due to

change in operators. So, a set of abstract operations or AbOp

(e.g. +, -, *, /, =) is created and it is attempted to compute

number of machine cycles needed to execute each abstract

operation [20]. This is done by timing a loop both with and

without the AbOp of interest; the change in the total number

of machine cycles is due to that AbOp. Now, computing the

number of cycles for each unit AbOp (CYCAbOp), it is

possible to predict total machine cycles for the submitted new

job. To elaborate, let us have new job NJ and history job HJ’

that is operator mismatch clone with NJ and in Execution

History it

Also contains Total Cycle Counts (TOT_CYC) for history

jobs acquired using code profiling tool TAU [21]. If there are

k operator mismatches between NJ and HJ’ namely operator

HJ’opi in HJ’ is replaced with NJopi in NJ for i=1 to k then,

NJopi

HJ op NJop

NJ HJ HJ op TOT _CYC TOT _CYC freq *CYC freq *CYC

Where,

TOT_CYCNJ= Predicted CPU cycle count of job NJ

TOT_CYCHJ’=CPU cycle count of history job HJ’ provided

by TAU

freqHJ’op=Number of times operator HJ’op executes in HJ’

freqNJop= Number of times operator NJop executes in NJ

CYCHJ’op=Number of cycles needed to complete single

HJ’op operation

CYCNJop=Number of cycles needed to complete single

NJop operation Thus, the total cycle count of program NJ on

machine M is just the linear combination of the number of

times each abstract operation is executed which depends only

on the program, multiplied by the number of cycles it takes to

execute each operation which depends only on the machine

CYCAbOp of each AbOp on machine M has already been

calculated. From TOT-CYC the processor time can be

computed using the well known equation

CPU time = TOT-CYC / CPU clock frequency

Fig- 3: User record Page

Fig: 3 shows record of the users who have used the system.

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 5, May 2016

Fig- 4: Clone matching window

Fig: 4 shows matching of two codes after they have been

uploaded.

Fig-5: Comparision Window

Fig: 5 shows comparison between the clones

obtained after the match detection phase. It shows the entire

matched and unmatched portion between the clones.

VI. CONCLUSION

 In this project, the system has proposed a powerful

asset necessity expectation system for the input guided

employment displaying instrument taking into account

reproduction recognition. Based on these the prediction

engine will select the optimum resource that will be least

loaded after job scheduling and will take least run time. The

prediction engine will tell the planner about the selected site.

The planner will then map the abstract work flow on to the

selected site. Cloning unnecessarily increases program size.

Since many maintenance efforts correlate with program size,

this increases the maintenance effort. A minimum

requirement is usually applied to the quantity of code that

must appear in a sequence for it to be considered duplicate

rather than coincidentally similar. Sequences of duplicate

code are sometimes known as code clones or just clones; the

automated process of finding duplications in source code is

called clone detection. The prediction technique works on top

of the hybrid clone detection system and is entirely

dependent upon the clone based similarity relation among the

newly submitted job and the jobs already executed and saved

in execution history. The proposed system can effectively

clone the coding using prediction method.

REFERENCES

[1] MadhulinaSarkar, Sarbani Roy, Nandini Mukherjee,

“Feedback-guided Analysis for Resource Requirements in

Large Distributed System”, published in 2010 10th

IEEE/ACM International Conference on Cluster, Cloud

andGrid Computing (CCGrid 2010).

[2] Ian Foster, “The Grid: A New Infrastructure for 21st

Century Science”, Physics Today. \Globus Toolkit,

www.globus.org/toolkit.

[3]MadhulinaSarkar, RupamMukhopadhyay,

DibyajyotiGhosh, Sarbani Roy, Nandini Mukherjee,

“Feedback Guided Job Modeling In PRAGMA Environment”.

GCA 2010: 115-121.

[4] MadhulinaSarkar, SameetaChudamani, Sarbani Roy,

Nandini Mukherjee, “A Hybrid CloneDetection Technique

for Estimation of Resource Requirements of a Job”, Accepted

in International Conference on Advanced Computing &

Communication Technologies, ACCT-2013, April 2013.

 [5]Shaneel Narayan (Member IEEE), Shailendra S. Sodhi,

Paula R. Lutui, Kaushik J. vijaykumar “Network

Performance valuation of Routers in IPv4/IPv6 Environment

A testbed analysis of software routers” 978-1- 4244-5849-

3/10/$26.00 ©2010 IEEE

[6] M. Bohlouli, M. Analoui, “Grid-HPA: Predicting

Resource Requirements of a Job in the Grid Computing

Environment”, World Academy of Science, Engineering and

Technology 42, 2008.

[7] Swarna M, P. S. SitharamaRaju, NageshVadaparthi,

“Memoir: A History based Prediction for Job Scheduling in

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE) Vol 3, Issue 5, May 2016

Grid Computing”, International Journal of Computer

Applications (0975 – 8887) Volume 46– No.10, May 2012.

[8] MadhulinaSarkar, TriparnaMandal, Sarbani Roy, Nandini

Mukherjee, “Resource requirement prediction using

Clonedetection technique”, published in journal, Future

Generation Computer Systems, Volume 29 Isuue 4, June

2013, Pages 936-952.

[9] C. K. Roy and J. R. Cordy (2007), “A Survey on Software

CloneDetection Research Techniques”, 115(2007-541), 115.

Citeseer.

[10] MadhulinaSarkar, RupamMukhopadhyay,

DibyajyotiGhosh, Sarbani Roy, Nandini Mukherjee,

“Feedback Guided Job Modeling In PRAGMA

Environment”. GCA 2010: 115-121.

