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Abstract:- In this paper, the effect of hall on the peristaltic flow of a conducting fluid in an inclined two dimensional channel under 

the assumption of long wavelength is investigated. A closed form solution is obtained for axial velocity and pressure gradient. The 

effect of various emerging parameters on the time-averaged volume flow is analyzed with the help of graphs.  
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I. INTRODUCTION    

  

 The word peristalsis stems from the Greek word 

Peristaltikos, which means clasping and compressing. 

Peristaltic pumping is a form of fluid transport generated in 

the fluid contained in a distensible tube when a progressive 

wave travels along the wall of the tube. It is an inherent 

property of many syncytial smooth muscle tubes; 

stimulation at any point can cause a contractile ring to 

appear in the circular muscle of the gut, and this ring then 

spreads along the tube. In such a way, peristalsis occurs in 

the gastrointestinal tract, the bile ducts, other glandular 

ducts throughout the body, the ureters, and many other 

smooth muscle tubes of the body, Guyton and Hall (2003). 

The study of the mechanism of peristalsis in both 

mechanical and physiological situations has recently 

become the object of scientific research, since the first 

investigation of Latham (1966). Several theoretical and 

experimental attempts have been made to understand 

peristaltic action in different situations.  A review of much 

of the early literature is presented in an article by Jaffrin 

and Shapiro (1971). A summary of most of the 

experimental and theoretical investigations reported with 

details of the geometry, fluid Reynolds number, 

wavelength parameter wave amplitude parameter and wave 

shape has been given by Srivastava and Srivastava (1984). 

 

The magnetohydrodynamic (MHD) flow of a fluid in a 

channel with peristalsis is of interest in connection with 

certain flow problems of the movement of conductive 

physiological fluids, (e.g., the blood flow in arteries). 

Agrawal and Anwaruddin (1984) investigated the effect of 

magnetic field on the peristaltic flow of blood using long 

wavelength approximation method and observed for the 

flow of blood in arteries with arterial stenosis or 

arteriosclerosis, that the influence of magnetic field may be 

utilized as blood pump in carrying out cardiac operations. 

Mekheimer (2004) studied the peristaltic transport of blood 

under effect of a magnetic field in non uniform channels. 

Hayat et al. (2007) have first investigated the Hall effects on 

the peristaltic flow of a Maxwell fluid trough a porous 

medium in channel. Hall Effect on peristaltic flow of third 

order fluid in a porous medium with heat and mass transfer 

was studied by Eldabe (2015). Recently, Subba 

Narasimhudu and Subba Reddy (2017) have investigated the 

effects of Hall on the peristaltic flow of a hyperbolic tangent 

fluid in a channel. 

 

In view of these, the effect of hall on the peristaltic flow of a 

conducting fluid in an inclined two dimensional channel 

under the assumption of long wavelength is investigated. A 

closed form solution is obtained for axial velocity and 

pressure gradient. The effect of various emerging 

parameters on the time-averaged volume flow is analyzed 

with the help of graphs. 

 

II. MATHEMATICAL FORMULATION 

 

We consider the peristaltic pumping of a conducting 

Newtonian fluid flow in an inclined channel of half-width a. 

A longitudinal train of progressive sinusoidal waves takes 

place on the upper and lower walls of the channel. For 
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simplicity, we restrict our discussion to the half-width of 

the channel as shown in the Fig.1. The wall deformation is 

given by  

  

    
2

, sinH X t a b X ct




 
   

 
 

       (2.1) 

where   is the amplitude,   the wavelength and   is the 

wave speed.  

Fig. 1 Physical Model 

 

Under the assumptions that the channel length is an 

integral multiple of the wavelength   and the pressure 

difference across the ends of the channel is a constant, the 

flow becomes steady in the wave frame  ,x y   moving 

with velocity c away from the fixed (laboratory) 

frame  ,X Y . The transformation between these two 

frames is given by  

 ,  ,   ,   x X c t y Y u U c v V       and 

 ( )  ( ,  ),p x P X t   (2.2)  

where  ,  u v and  ,  U V  are the velocity components,  

p   and  P   are pressures in the wave and fixed frames of 

reference, respectively.  

The equations governing the flow in wave frame are given 

by  

0
u v

x y

 
 

 

,    (2.23) 
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      
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                                                                 (2.4) 
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                                                                 (2.5)  

where  is the density   is the electrical conductivity, 

0B  is the magnetic field strength and  m  is the Hall 

parameter.   

The dimensional boundary conditions are 

u c    at y H  (2.6) 

0
u

y





  at 0y     (2.7) 

Introducing the non-dimensional quantities 
2 22

2 0, , , , , , , , , ,
a Bx y u v a pa ct H b q

x y u v p t h q M
a c c c a a ac


 

      
          

 

Into equations (2.3) to (2.5), we get 

0
u v

x y

 
 

 
    (2.8) 
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                      (2.10) 

where 
2c

Fr
ag


 is the Froude number, M  is the Hartmann 

number and Re  is the Reynolds number.  

Using long wavelength (i.e., 1  ) 

approximation, the equations (2.9) and (2.10) become  
2 2 2

2 2 2

Re
sin

1 1

u M p M
u

y m x Fr m


 
   

   

 (2.11) 

 
0

p

y






               (2.12)  

 

From  Eq. (2.12), it is clear that p  is independent of y . 

Therefore Eq. (2.11) can be rewritten as 
2 2 2

2 2 2

Re
sin

1 1

u M dp M
u

y m dx Fr m



   

  
 (2.13) 

The corresponding non-dimensional boundary conditions 

are given as 

1u     at  y h   (2.14) 

0
u

y





 at 0y                   (2.15) 

Knowing the velocity, the volume flow rate q  in a wave 

frame of reference is given by 

 
0

h

q udy  .    

     (2.16) 

 

The instantaneous flow Q ( , )X t  in the laboratory frame is 

 
0 0

( , ) 1
h h

Q X t UdY u dy q h       (2.17) 
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The time averaged volume flow rate Q  over one period 

T
c

 
 
 

 of the peristaltic wave is given by 

0

1
1

T

Q Qdt q
T

                      (2.18)  

 

III. SOLUTION 
  

 Solving Eq. (2.13) together with the boundary 

conditions (2.14) and (2.15), we get 

2

1 Re cosh
sin 1 1

cosh

dp y
u

dx Fr h




 

  
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   

        (3.1) 

Where 2/ 1M m    . 

     The volume flow rate q  in a wave frame of reference is 

given by 

3

1 Re sinh cosh
sin

cosh

dp h h h
q h

dx Fr h

  


 

  
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    (3.2) 

From Eq. (3.2), we write 

  3 cosh Re
sin

sinh cosh

q h hdp

dx h h h Fr

 


  


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
        (3.3)  

      The dimensionless pressure rise per one wavelength in 

the wave frame is defined as  

1

0

dp
p dx

dx
             (3.4) 

Note that, as 0  , 0M  and 0m    our results 

coincide with the results of Shapiro et al. (1969). 

 

IV. RESULTS AND DISCUSSION 

 

The variation of pressure rise p  with time-averaged flow 

rate Q  for different values of Hartmann number M  with 

0.5  , Re 5 , 2Fr  , 
4


    and 0.2m   is 

depicted in Fig. 2. It is found that, the time-averaged flow 

rate Q  increases in the pumping region  0p    with 

increasing M , while it decreases in both the free-pumping 

 0p   and co-pumping  0p   regions with 

increasing M . 

Fig. 3 illustrates The variation of pressure rise 

p  with time-averaged flow rate Q  for different values 

of Hall parameter m  with 0.5  , Re 5 , 2Fr  , 

4


    and 1M  .  It is observed that, the time-

averaged flow rate Q  decreases in the pumping region with 

an increase in m , while it increases in both the free-

pumping and co-pumping regions with increasing m .     

The variation of pressure rise p  with time-

averaged flow rate Q  for different values of Froude 

number Fr  with 0.5  , Re 5 , 
4


   , 1M   

and 0.2m   is shown in Fig. 4. It is observed that as 

increase in Fr  decreases the time averaged flow rate Q  in 

all the pumping, free-pumping and co-pumping regions.  

Fig. 5 shows the variation of pressure rise p  

with time-averaged flow rate Q  for different values of 

Reynolds number Re  with 0.5  , 2Fr  , 
4


   

, 1M   and 0.2m  .  It is found that, on increasing Re  

increases the time averaged flow rate Q  in all the pumping, 

free-pumping and co-pumping regions.  

The variation of pressure rise p  with time-

averaged flow rate Q  for different values of inclination 

angle   with 0.5  , Re 5 , 2Fr  , 1M     and 

0.2m   is presented in Fig. 6. It is noticed that, the time 

averaged flow rate Q  increases with increasing   in all 

the pumping, free-pumping and co-pumping regions.  

Fig. 6 depicts the variation of pressure rise p  

with time-averaged flow rate Q  for different values of 

amplitude ratio   with 0.2m  , Re 5 , 2Fr  , 

4


     and 1M  . It is observed that, the time-

averaged flow rate Q  increases with increasing amplitude 

ratio    in both the pumping and free pumping regions, 

while it decreases with increasing amplitude ratio   in the 

co-pumping region for chosen  0p  .   

 

V. CONCLUSIONS 
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In this chapter, the effect of Hall on the peristaltic flow of a 

conducting fluid in an inclined channel under the 

assumption of long wavelength approximation is 

investigated. The expressions for the velocity and pressure 

gradient are obtained analytically. It is found that, the time-

averaged flow rate in the pumping region is increases with 

increasing Hartmann number Reynolds number, angle of 

inclination or amplitude ratio, whereas it decreases with 

increasing hall parameter or Froude number.  Further it is 

observed that, the pumping is more for vertical channel 

2



 

 
 

 than that of horizontal channel  0  . 

 

 
                                       Fig. 2.  
 

 
                                       Fig. 3  

 

                                      

 
                                         Fig. 4.  

 
                                         Fig. 5  
 

 
                                                  Fig. 6.  
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                                        Fig. 7 

Fig. 2. The variation of pressure rise p  with time-

averaged 

flow rate Q  for different values of Hartmann number M  

with Fig. 3. The variation of pressure rise p  with time-

averaged flow rate Q  for different values of Hall parameter 

m  with 0.5  , Re 5 , 2Fr  , 
4


    and 1M  .   

, Re 5 , 2Fr  , 
4


    and 0.2m  .   

Fig. 4. The variation of pressure rise p  with time-

averaged flow rate Q  for different values of Froude 

number Fr  with 0.5  , Re 5 , 
4


   , 1M   and 

0.2m  .   

 

Fig. 5. The variation of pressure rise p  with time-

averaged flow rate Q  for different values of Reynolds 

number Re  with 0.5  , 2Fr  , 
4


   , 1M   and 

0.2m  .   

Fig. 6. The variation of pressure rise p  with time-

averaged flow rate Q  for different values of inclination 

angle   with 0.5  , Re 5 , 2Fr  , 1M     and 

0.2m  .   

 

 

Fig. 7. The variation of pressure rise p  with time-

averaged flow rate Q  for different values of amplitude 

ratio   with 0.2m  , Re 5 , 2Fr  , 
4


 

   and 1M   
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