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Abstract - This paper elaborates the implementation of an unsupervised Artificial Neural Network (ANN) on FPGA hardware for 

data classification. ANN is the best option to classify a large amount of data into several desired classes as per the characteristics 

and parameters of the given data samples. Implementation of an unsupervised ANN on a chip eliminates the additional stage of 

software simulation of the ANN for the given dataset, i.e. training of ANN using a software and then implementation of trained 

ANN on FPGA chip. The Unsupervised ANN is implemented on Xilinx Virtex-4 FPGA, which consumes less on-chip resources, 

consuming less power at optimum speed. 
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1.  INTRODUCTION 

 

Data classification is an essential task in many of the daily 

processes. From biomedical to agriculture, and from 

statistics to space-science, data classification is widely 

used to analyze several parameters so that they can be 

“grouped” as per the desired characteristics or criteria. 

Generally, data classification is done by manual (e.g. 

classification by assigning workers), approximation (e.g. 

by guessing from parameters like size), and several other 

processes. But the methods like manual and 

approximation are suitable if the data or objects to be 

classified are smaller in number. For a large amount of 

data, these methods prove time-consuming – means they 

are taking more time to processing as the data increases. 

So, for these scenarios, automated data classification 

techniques can be the best option. 

 

A. Problem Statement 

 

For automated rapid data classification, use of an 

Artificial Neural Network (ANN) is one of the efficient 

options. Artificial Neural Networks (ANNs) are 

computing systems which mimics the biological neural 

networks. ANN „learns‟ i.e. progressively improves 

performance to do tasks by considering examples without 

task-specific programming. ANNs are preferred in such  

 

 

 

applications, where a normal traditional algorithm with  

rule-based programming proves difficult for 

implementation. Generally, ANNs can be trained to 

achieve the desired functionality by several learning 

methods, known as Supervised and Unsupervised 

Learning Techniques [1], [2].  

 

In supervised learning, there are some input variables, an 

output variable, and the implementation of such an 

algorithm is required to learn the mapping function which 

can map inputs and output variable [2]. That is, if „x‟ is 

any input data and „y‟ is the output variable, then an ANN 

should learn the mapping function y = f(x). The goal of a 

supervised ANN is to approximate the mapping function 

y = f(x), such that when a new input „x‟ is given to the 

ANN, it should predict the output variables „y‟.  

 

In the supervised learning process, the correct output class 

or value is already known for an input, so the algorithm 

repetitively makes predictions on the training data and is 

corrected by the known output values, like a supervisor. 

The learning process of ANN stops when the algorithm 

reflects an acceptable level of performance [2]. 
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Fig. 1: General representation of an ANN [1]. 

 

In unsupervised learning, there is only input data „x‟ and 

no corresponding output variables „y‟. The purpose of 

unsupervised learning is to train an ANN architecture by 

such a way that, it can learn more about the data without 

any external guidance. As opposite to supervised learning, 

there are neither correct answers nor any supervision. So, 

the algorithms fully depend on the ANN structure for data 

clustering or data association [2]. 

  

For real-time data classification using ANNs, generally 

there are two approaches usually followed: software-

based and hardware-based. In software-based approaches, 

the data to be classified is in digital format. Hence, the 

implementation and training of an ANN is done with the 

aid of software tools. The advantage of ANN software 

implementation is the related code is flexible. As the 

application for ANN changes, code instructions can be 

modified as per convenience. The main drawback of 

ANN software implementation is the requirement of large 

overhead for running in parallel with the ANN software 

implementation by the operating system and other 

software applications [3]. If the real-time data is hardware 

input (e.g. switch or relay) or signal input (e.g. an EEG 

signal or revolution per second value), taking help of 

software tools should be less effective. This happens due 

to hardware data we have to send to a host where it is 

evaluated by a software tool, and after processing, we 

have to send the processed output back to the hardware 

where the user observes it actually. In such a case, ANNs 

are first trained on a software tool. This trained ANN is 

preferred to implement on FPGA Hardware. So, direct 

implementation of ANN hardware which can be trained 

without any external training software tool seems to be 

beneficial.  Implementing an ANN direct as hardware will 

save conversion time and transmission time from one 

medium (hardware) to another medium (software). Also, 

as the computations are directly being performed by 

hardware, the operating speed of ANN will be much 

faster. Hardware implemented ANNs fully reflects the 

parallel operation of the neurons, hence achieving a very 

high speed of information processing as compared with 

computer-based sequentially simulated ANNs [4]. 

 

B. Organization of the Paper 

This paper is organized as follows: section II describes 

the basic framework required for object counting 

techniques using image processing. In Section III, the 

methodology for implementation of an unsupervised 

ANN on a Virtex-4 chip is presented. The results are 

analyzed in section IV. 

 

II. FRAMEWORK 

 

Generally, any Artificial Neural Network i.e. ANN is 

made up of planned interconnections of its basic elements 

called as neurons. Neurons are behaviorally similar to the 

neurons as in the mammalian nervous system. The basic 

neuron can be represented as shown in Fig. 2. 

 

 

Fig. 2: Structure of a basic neuron in ANN [1]. 
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A. Input Reception and processing 

For any neural network, inputs are given to several 

building blocks (called as neurons) as per the ANN 

architecture. Inputs are multiplied by several parameters 

called as „weight‟, before giving as an input to each 

neuron. Weights are assigned to the specific inputs. If a 

neuron has „n‟ inputs, then it has „n‟ weights that can be 

adjusted individually. During the training of ANN, values 

of the weights can be adjusted considering the error of the 

last test result [1].  

 

B. Summing Junction 

After processing by weights, the inputs are summed up to 

obtain a single value. In this step, an adjustable offset 

(called as bias) is also added to this sum. ANN can adjust 

the bias value during the ANN training. At the beginning, 

all the neurons have random values of weights and biases. 

Weights and biases are changed by a small value after 

every learning iteration so that the next result is a bit 

closer to the desired output. This way, the ANN 

approaches towards a state where it can be considered that 

it has „learned‟ the desired patterns [1].  

 

C. Activation Function 

The result of the summing junction output is converted 

into an output signal. This is done by passing this result to 

an activation function. The most basic form of an 

activation function is a simple binary threshold function 

that has only two possible results: „high‟ and „low‟. A 

similar activation function is described in Fig. 3. 

 

 

Fig. 3: The Heaviside Step function. 

 (If x1, x2, … xi are the inputs, w1, w2, … wi are their 

respective assigned weights, and b is the bias added, then 

the summing junction gives output, which can be 

represented in the equation form as 

 

 

bxw nin n   ...3,2,1
              (1) 

 

  If Φ(x) is the activation function of the neuron, 

then as per the requirement, we can define Φ(x) as 
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 These types of activation functions come under a 

category termed as “the Heaviside Step function” [5]. 

This function returns 1 if the input is positive or zero, and 

0 if the input is negative. A neuron having the similar type 

of activation function is called as „perceptron‟ [1]. In this 

work, these perceptrons are used with a slight 

modification. 

 

By joining or cascading such a neurons in the desired 

way, a multilayer ANN can be constructed. Each layer 

can have a number of neurons, who are taking inputs from 

the previous layer and their outputs are cascaded to the 

next layer. A representation of a multilayer ANN is 

shown in Fig. 4. 

 

 

Fig. 4: A generalized framework for a multilayer ANN. 

 

Most of the recent works [6]-[9] have followed the same 

framework; however, the activation functions, HDL 

Language and target hardware are varying in each work. 

 

III. METHODOLOGY 

  

In this work, the proposed workflow is – to acquire three 

1-bit input data, use the same to pass to a 3×2 

Unsupervised ANN structure, performing convolution of 

the processed inputs, and decision making for 

classification of the given input combination by an 

activation function. The simulation of the ANN is done in 

Questa Sim 10.0b simulator software and its 
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implementation is done by using Xilinx ISE Design Suite 

14.7 and Virtex-4 (XC4VLX25–10–FF668) FPGA 

Development Board Hardware. 

  

 
Fig. 5: Implementation scheme for the proposed 

unsupervised 3×2 ANN. (Note: Activation function 

block is not shown) 

  

The ANN unit consists of two perceptrons, having three 

single bit inputs and one single-bit output. The 

arrangement of ANN using these perceptrons is shown in 

Fig. 5. Here, A, B, and C are the inputs to the ANN and Y 

and Z are the outputs with different activation functions. 

The design of the ANN is done using Verilog Hardware 

Descriptive Language (HDL). 

 

A. Generation of Test Data 

For the generation of a complete data set from three 1-bit 

inputs, generally, 23 = 8 combinations are required. It 

means, if A, B, and C are three inputs which are binary, 

then we require eight combinations of all values of these 

three variables – {A,B,C} = {(0,0,0), (0,0,1), (0,1,0), 

(0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)}. These data 

combinations are generated by using three clock signals 

with frequency f Hz, f/2 Hz, and f/4 Hz. The two signals 

with frequencies f/2 Hz and f/4 Hz are obtained from the 

first signal with frequency f Hz by implementing a 

frequency-divider cum binary counter circuit. The 

schematic representation is shown in Fig. 6. Here, 

frequency divider unit is made up of cascaded D flip-

flops. The output of the frequency divider block is also 

given to the LEDs so that user can observe that which 

output is being provided to the input of the ANN block. 

This hardware design helps to compare the input being 

given to the ANN and output generated by the same, at 

the same time. Hence, tallying the input-output becomes 

easy and real-time. For Virtex-4 implementation, the 

value of „f‟ is chosen as 1 Hz, so that step-by-step 

changes can be easily observed by human vision. 

 

 
Fig. 6: Hardware scheme for generation and interfacing 

test data block (frequency divider block) and ANN block 

 

B. Experimental Procedure 

For implementing a perceptron, a scheme shown in fig. 2 

is used. At first, a Verilog code for simple 3×1 ANN is 

simulated and synthesized. If the circuit of ANN is made 

asynchronous, it forms combinational loops within the 

design, which leads to failure of the hardware 

implementation of ANN. Combinational loops are logical 

structures that do not contain any synchronous feedback 

element like registers [10]. These loops affect the stability 

of output and will generate different results than expected. 

Since combinational loops make feedback with no any 

register in loops, such a design violates the synchronous 

principles [10]. Hence, synchronization of the design with 

a periodic reference signal becomes necessary. Usage of a 

clock signal for synchronization introduces flip-flops in 

the design. Also, synchronization eliminates almost all 

combinational loops in the digital circuit synthesized for 

the ANN. Apart from the clock; a synchronous reset is 

also introduced to the circuit for restarting the training 

process if needed. 

 

At first, the three inputs A, B and C are given to the 

inputs of the two perceptrons. Let‟s call the perceptron 

generating output Y as P-Y, and the perceptron generating 

output Z as P-Z. The RTL Schematic of the 

implementation of the 3×2 ANN is shown in Fig. 7. One 

can compare Fig. 6 with Fig. 7 for understanding the 

hardware implementation on Virtex-4. As per the 

framework of a perceptron, the inputs are multiplied by 

some configurable weights. The bias value can also be 
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fetched to a perceptron for covering the missing 

classifications by linear equations of weight-input pairs 

[11]. Referring Fig. 5, the formula for summing junctions 

of P-Y and P-Z can be declared respectively as 

SumY = (A × W1) + (B × W2) + (C × W3) + b1 (3) 

 

SumZ = (A × W4) + (B × W5) + (C × W6) + b2 (4) 

 

From the above formulas, it can be concluded that the 

convolution takes place for all the input values. The 

summation results can be cascaded to the activation 

function unit. Now, for activation function, the Biased 

Heaviside Step Function is preferred. It means that, if the 

output is above the pre-decided threshold, the output of 

the perceptron will be high. The threshold value is 

reconfigurable via Verilog coding. For current 

implementation, the biased threshold value is set to an 

unsigned positive 31 (9'b000011111). The activation 

function is same for both P-Y and P-Z, and the output is 

also given to the respective perceptron outputs Y and Z. 

  

 

Fig. 7: RTL Schematic of 3×2 ANN. 

 

 
Fig. 8: RTL Schematic of a perceptron. 

 

Now, for training the ANN, we have to reconfigure the 

weights and biases to get exact classification as per 

expectations. It is already known that inputs can have 

only eight possible combinations. Hence, it is considered 

that each perceptron must classify all the inputs in their 

two respective categories, according to the weights and 

biases applied. Each class can have half of the possible 

input combinations i.e. four samples. To obtain this, for 

each cycle of eight possible combinations, it is necessary 

to count a number of all „highs‟ for each perceptron. If it 

is less than four, we have to adjust weights and biases by 

a specific value. The adjustment is continued for every 

iteration of all combinations (can be considered as 

learning iterations) till the circuit satisfied the said 

condition for classification. The resultant RTL schematic 

for the similar perceptron circuit is shown in Fig. 8. In the 

figure, the block N1 (neuron3x1) consists of only input 

processing unit (i.e. part of ANN where multiplication of 

all inputs by weights happens) and summing junction. 

The block CMP1 (comp_g) consists activation function 

for the perceptron. The output is monitored for 

modification in input processing parameters. 

 

Almost all the blocks (excluding neuron3x1 and 

comparators) uses the clock and reset signals for 

synchronized operations. It increases the stability of 

circuit operations and formation of glitches or 

metastability in the outputs [12]. The same synthesized 

design is later implemented on Xilinx ML401 Virtex-4 

FPGA Development Board hardware, which is shown in 

Fig. 9. 
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Fig. 9: A Vitrex-4 ML401 FPGA Development Board. 

 

IV. ANALYSIS OF RESULTS 

 

The simulation result of the 3×2 ANN design is displayed 

in Fig. 10. From simulation results, it is clear that if all of 

the processing parameters (i.e. weights and biases) are 

reconfigurable, then ANN takes more time for training. 

(Note: Compare wave labels of Fig. 10 with diagram 

labels of Fig. 6 for easy understanding of simulation.) 

 

TABLE I 

Design Summary for 3×2 ANN with FDB 

Logic Utilization Used Available Utilization 

Number of Slice Flip 

Flops 
108 21,504 1% 

Number of 4 input 

LUTs 
79 21,504 1% 

Number of occupied 

Slices 
106 10,752 1% 

 

Number of Slices 

containing only 

related logic 

106 106 100% 

Total Number of 4 

input LUTs 
80 21,504 1% 

 

Number used as 

logic 
79     

 

Number used as a 

route-thru 
1     

Number of bonded 

IOBs 
7 448 1% 

Number of 

BUFG/BUFGCTRLs 
1 32 3% 

Average Fanout of 

Non-Clock Nets 
3.45     

     

 

With a 100 MHz-to-1 Hz Frequency Divider Block 

(FDB), this design can run with the clock signal having 

minimum clock period 4.076 ns (i.e. maximum frequency 

245.360 MHz) smoothly. The synthesis summary for the 

same is given in Table I. 

For considering an application-based implementation of 

this 3×2 ANN on Virtex-4, the frequency divider block 

can be removed and the inputs can be taken from other 

interfaces. Without the 100 MHz-to-1Hz frequency 

divider block, this design can run with the clock signal 

having minimum clock period 3.462 ns (i.e. maximum 

frequency: 288.863 MHz).  

 

 
Fig. 10: Simulation Results for 3×2 ANN. 

 

 
Fig. 11: Implementation results during the training of 

the 3×2 ANN. 

(a) For input combination 011. (b) For input combination 

100. (c) For input combination 101. 

West, Center and East LEDs are reflecting inputs C, B 

and A respectively.  
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Fig. 12: Implementation results after training of the 3×2 

ANN. 

 

(a) For input combination 011. (b) For input combination 

100. (c) For input combination 101. 

North and South LEDs are displaying outputs Y and Z 

respectively. 

 

This is the maximum possible speed of the proposed on-

chip trainable unsupervised ANN for a Virtex-4 FPGA 

hardware. The synthesis summary for the same is given in 

Table II. Here, the number of bounded IOBs is increased 

from 7 to 10, due to the removal of frequency divider 

block (FDB) and taking actual inputs from hardware for 

classification. 

 

TABLE II 

Design Summary for 3×2 ANN without FDB 

Logic Utilization Used Available Utilization 

Number of Slices 46 10752 0% 

Number of Slice Flip 

Flops 
52 21504 0% 

Number of 4 input 

LUTs 
81 21504 0% 

Number of bonded 

IOBs 
10 448 2% 

Number of GCLKs 1 32 3% 

 

The implementation results of the 3×2 ANN on Virtex-4 

Development Board are shown in Fig. 11 and Fig. 12 

respectively. The inputs A, B, and C can be observed on 

the East, Center and West LEDs respectively. The output 

Y and Z are displayed on the North and South LEDs. 

After training, the input-output combinations for the final 

values of input processing parameters are displayed in 

Table III. From results, we can conclude that – if we 

consider {A,B,C} as a three-bit input binary number, the 

ANN classifies the input by two ways. At output Y, if the 

number lies in the upper half, Y goes high. At output Z, if 

the number is odd, Z goes high. By designing activation 

function algorithm circuit in different ways, we can obtain 

different results. 

 

TABLE III 

Implementation results after training of 3×2 

unsupervised ANN as per final values of weights and 

biases 

A B C Y Z 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 1 1 

1 1 0 1 0 

1 1 1 1 1 

 

CONCLUSION AND FUTURE SCOPE 

 

This work introduces a prototype hardware 

implementation of a 3×2 perceptron-based unsupervised 

ANN on Virtex-4 FPGA chip for data classification 

purpose. These types of designs are much faster than 

processor-based implementations, since they utilize the 

comparatively less on-chip area. These designs can also 

handle real-time data well as compared with software 

simulated ANNs due to natural parallelism in the ANN 

hardware. If the Unsupervised ANN has more 

reconfigurable input processing parameters, the circuit of 

activation function algorithm becomes more complex. 

Hence, it is recommended to implement a trained ANN on 

the chip rather than training the same on the hardware. If 

area optimization is not important, then the similar 

reconfigurable ANN hardware can be used smoothly in 

application-based classification and regression circuits. 

Such a neural network can be further developed for the 

regression-based hardware where prediction of future 

values can be done. Also, it can be used for automated 

unsupervised classification of any fixed sized data. Since 
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on-chip training is enabled, the ANNs can still train 

themselves after hardware implementation, leading to 

auto-reconfiguration of ANN parameters. This is 

equivalent to self-upgrading the hardware, which is the 

rare phenomenon in hardware. These types of self-

learning hardware components can be further developed 

as a neuroprocessor. 
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