

 14

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 5, Issue 5, May 2018

Implementing an Effective Online Algorithm for

Reducing Network Traffic Cost through the

MapReduce Job in Online Manner

[1]
 Vattipally Latha,

[2]
 Dr. M. Rama Subramanian

[1]
M. Tech Student,

[2]
 Professor & Head,

[1][2]
 Department of CSE, Sridevi Women’s Engineering College,

Village VattiNagulaPally, Mandal Rajendra Nagar, District RangaReddy, Telangana, India
.

Abstract: - Most existing work makes of MapReduce efficiency development via optimizing its information transmission.

Additionally to information partition, many efforts have been made on nearby aggregation, in-mapper combining and in-network

aggregation to decrease network visitors inside MapReduce jobs. The goal of enhancement of network visitors is done with the aid

of utilizing partition and aggregation. In line with typical system a hash function is used to partition intermediate knowledge

amongst scale back duties however the natural operate will not be efficient to control network traffic. A new intermediate data

partition scheme is designed to lessen network user’s rate in MapReduce. The aggregator placement concern is regarded, where

each and every aggregator can slash merged traffic from more than one map duties. On this paper, we are studying the joint

optimization of intermediate data partition and aggregation in MapReduce to lessen network traffic cost for large information

purposes. We advocate a three-layer model for this hindrance and formulate it as a mixed-integer nonlinear main issue, which is

then transferred into a linear kind that may be solved by way of mathematical tools.

Key words: - MapReduce, Network Traffic.

I. INTRODUCTION

Big data is an open-source structure that makes it

possible for to store & procedure significant data in a

dispensed atmosphere across clusters of computer

systems utilizing simple programming units. It is

designed to scale up from single servers to 1000's of

machines, each and every providing local computation

and storage. The core of Hadoop consists of a storage

part, known as Hadoop Distributed File System (HDFS),

and a processing part referred to as Map shrink. Hadoop

splits records into giant blocks and distributes them

across nodes in a cluster. To procedure knowledge,

Hadoop transfers packaged code for nodes to process in

parallel situated on the information that wants to be

processed. This method takes expertise of data locality

nodes manipulating the information they have entry to

permit the dataset to be processed faster and more

successfully than it could be in a more conventional

supercomputer architecture that depends on a parallel file

approach where computation and data are allotted via

excessive-velocity networking. Big data is for essentially

the most section accretion of expertise units so well-

known and multifaceted that it's remarkably rough to

handle them utilizing close via database admin devices.

The principle challenges with giant databases comprise

inquiry, production, examination, sharing and perception

and stockpiling. As a topic of first significance,

understanding is procured from different sources, for

illustration, on-line networking, long-established sensor

knowledge or project information and so forth. Flume

can also be utilized to riskless expertise from online

networking. At that factor, this know-how can be

gathered utilizing conveyed deed frameworks, for

illustration, Google File process. These frameworks are

very in a position when number of peruses are high when

contrasted with composes.

When working out the efficiency of MapReduce

methods; it's easy to view a MapReduce job as which

include three phases instead than two phases. The

additional section, which is viewed between the map

phase and the shrink segment, is an information switch

phase referred to as the `shuffle' segment. Within the

shuffle phase, the output of the map section is

recombined and then transferred to the compute nodes

that are scheduled to participate in corresponding slash

operations. The performance of MapReduce systems

certainly is dependent closely on the scheduling of duties

belonging to these three phases even though many efforts

were made to beef up the performance of MapReduce

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 5, May 2018

 15

jobs, they exhibit blind observe to the network traffic

generated within the shuffle section, which performs a

significant role in performance enhancement. In

traditional means, a hash perform is used to partition

intermediate information among reduce duties, which,

nevertheless, isn't visitors-effective on the grounds that

we don’t recall network topology and knowledge size

associated with each key. On this paper, via designing a

novel intermediate information partition scheme we slash

network site visitor’s price for a MapReduce job.

Configuring the job, submitting it, controlling its

execution, and querying the state are distributed to

consumer with the aid of Hadoop. Every job contains

impartial tasks, and the entire tasks have got to have a

method slot to run. All scheduling and allocation

selections in Hadoop are made on a assignment and node

slot degree for each the map and reduce phases. The

Hadoop scheduling mannequin is a grasp/Slave

(master/worker) cluster constitution. The grasp node

(JobTracker) coordinates the worker machines

(TaskTracker). JobTracker is a method which manages

jobs, and TaskTracker is a system which manages tasks

on adjoining nodes. The scheduler resides in the

Jobtracker and allocates to TaskTracker quite a lot of

resources to jogging tasks: Map and scale down tasks are

granted impartial slots on each computer.

II. RELATED WORK

The literature survey defines previous working details of

some writer concerning equal subject. By deciding on the

methodologies and strategies of them we are going to

construct an efficient one procedure to retrieve

tremendous information.

Chi Yang et all explains a method on A Time effective

process for Detecting blunders in colossal Sensor

information on Cloud, introduces as colossal sensor

knowledge is generic in each industry and scientific

research functions the place the information is generated

with high volume and speed it's complex to approach

making use of on-hand database administration tools or

normal data processing applications. Cloud computing

supplies a promising platform to support the addressing

of this project as it provides a flexible stack of huge

computing, storage, and application offerings in a

scalable manner at low fee. Some techniques had been

developed in up to date years for processing sensor

knowledge on cloud, corresponding to sensor-cloud.

Nonetheless, these procedures do not provide efficient

support on rapid detection and finding of mistakes in

enormous sensor knowledge sets. Hadassa Daltrophe,

Shlomi Dolev and Zvi Lotker introduces information

interpolation situated Aggregation. Given a large set of

dimension sensor data, in direct to recognize an easy

operate that captures the importance of the information

assembled by way of the sensors, we propose for

representing the data with (spatial) capabilities, in

distinctive with polynomials. Given a (exampled) set of

values, we interpolate the datapoints to explain a

polynomial that might signify the data. The interpolation

is value, given that in undertaking the information is able

to be noisy and even Byzantine, the place the Byzantine

information stand for an adversarial worth that isn't

confined to being close to the proper measured data. The

managing of significant knowledge structure also

presents interest for the disbursed interpolation process.

The thought of gigantic information occurs to some of

the essential duties within the occurrence of the massive

quantity of information generated by way of nowadays.

Speaking and examining the whole data does not extent,

even when data aggregation approaches are employed.

This recommends a technique to symbolize the

distributing huge information by using a handy

conceptual perform so that it will direct to efficient

utilize of that data. To overcome the above limit, produce

two solutions, one that expands the Welch-Berlekamp

method within the case of multidimensional knowledge,

and copes with discrete noise and Byzantine information,

and the subsequent one is established on Arora and Khot

methods, increasing them within the case of

multidimensional noisy and Byzantine knowledge. For

the period of the research we comprise illustrious two

different measures for the polynomial becoming to the

Byzantine noisy data crisis: the primary being the Welsh-

Berlekamp simplification for discrete-noise

multidimensional knowledge and the 2d being the linear-

programming estimate for multivariate polynomials.

Approached by using the error-correcting code systems,

we have now encouraged a method to signify a loud

malicious input with a multivariate polynomial.

III. FRAMEWORK

In this paper, we tend to together consider knowledge

partition and aggregation for a MapReduce job with an

objective that's to reduce the whole network traffic.

Particularly, we propose a distributed rule for big data

applications by molding the initial large-scale drawback

into many sub issues which will be resolved in parallel.

Moreover, an online algorithm is intended to influence

the data partition and aggregation in a very dynamic

manner.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 5, May 2018

 16

A. MapReduce Working

Fig. 1 Execution flow of MapReduce

The overall flow of a MapReduce operation which fits

through the following sequence of actions:

1. The input file of the MapReduce program is

split into M items and starts up several instances of the

program on a cluster of machines.

2. One among the instances of the program is

elective to be the original whereas the remainders are

thought of as workers that are appointed their work by

the original. Above all, there are M map tasks and R

reduce tasks to assign. The master picks idle workers and

assigns each or a lot of map tasks and/or reduces tasks.

3. A worker who is appointed a map task processes

the contents of the equivalent input split and generates

key/value tries from the input file and passes every pair

to the user-defined Map function. The intermediate

key/value pairs created by the Map function are buffered

in memory.

4. Sometimes, the buffered pairs are written to

native disk and partitioned off into R regions by the

partitioning function. The locations of those buffered

pairs on the native disk ar passed back to the master, who

is accountable for forwarding these locations to the scale

back workers.

5. Once a reduce employee is notified by the

master regarding these locations, it reads the buffered

knowledge from the native disks of the map workers that

is then sorted by the intermediate keys in order that all

occurrences of an equivalent key are classified along.

The sorting operation is required as a result of generally

many alternative keys map to an equivalent reduce task.

6. The reduce employee passes the key and also

the corresponding set of intermediate values to the user’s

scale back function. The output of the reduce function is

added to a final computer file for these reduce partition.

7. Once all map tasks and reduce tasks are

completed, the master program wakes up the user

program. At this time, the MapReduce invocation within

the user program returns the program management back

to the user code.

B. System Overview

Our network topology is founded on three tier

architectures:

1. Access tier

2. Aggregation tier

3. Core tier

From above figure, the entry tier is made from price-

robust Ethernet switches connecting rack VMs. The

access switches are connected via Ethernet to a collection

of aggregation switches which in flip are linked to a layer

of core switches. An inter-rack hyperlink is essentially

the most contentious useful resource as all the VMs

hosted on rack transfer knowledge throughout the link to

the VMs on other racks. Our VMs are allotted in three

unique racks, and the map-lower tasks are scheduled as in

determine. For example, rack 1 consists of node 1 and 2;

mappers 1 and a couple of are scheduled on node 1 and

reducer 1 is scheduled on node 2. The intermediate

information forwarding between mapper and reducers

must be transferred throughout the network. The hop

distances between mappers and reducers are proven in

determine, e.g., mapper 1 and reducer 2 has a hop

distance 6.

IV. EXPERIMENTAL RESULTS

In this paper, we perform experiments on MapReduce

jobs. In this experiment, we run the reducers and define

the location values with latitude and longitude. After this,

we upload documents as an input to send in the network.

After giving input, we have to start the MapReduce

aggregation. It will take some time to processing the

uploaded data and it displays processing time as well as

aggregated data on the screen.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)
Vol 5, Issue 5, May 2018

 17

Finally, we get the aggregated data and we can get the

processing time chart.

Through this experiment we can say our application can

significantly reduce the network traffic cost.

V. CONCLUSION

In this paper we can conclude that the main objective of

this paper is to reduce the network traffic cost for big

data application by using three-tier model. In this

proposed model we considered data partition and

aggregation techniques by using MapReduce. This

MapReduce model works based on two primitives: Map()

and Reduce(). Finally, we prove that our proposed system

efficiently reduce the network traffic cost.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce:

simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–

113, 2008.

[2] W. Wang, K. Zhu, L. Ying, J. Tan, and L.

Zhang, “Map task scheduling in mapreduce with data

locality: Throughput and heavy-traffic optimality,” in

INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp.

1609–1617.

[3] F. Chen, M. Kodialam, and T. Lakshman, “Joint

scheduling of processing and shuffle phases in

mapreduce systems,” in INFOCOM, 2012 Proceedings

IEEE. IEEE, 2012, pp. 1143–1151.

[4] Y. Wang, W. Wang, C. Ma, and D. Meng,

“Zput: A speedy data uploading approach for the hadoop

distributed file system,” in Cluster Computing

(CLUSTER), 2013 IEEE International Conference on.

IEEE, 2013, pp. 1–5.

[5] T. White, Hadoop: the definitive guide: the

definitive guide. ” O’Reilly Media, Inc.”, 2009.

[6] S. Chen and S. W. Schlosser, “Map-reduce

meets wider varieties of applications,” Intel Research

Pittsburgh, Tech. Rep. IRP-TR-08-05, 2008.

[7] J. Rosen, N. Polyzotis, V. Borkar, Y. Bu, M. J.

Carey, M. Weimer, T. Condie, and R. Ramakrishnan,

“Iterative mapreduce for large scale machine learning,”

arXiv preprint arXiv:1303.3517, 2013.

[8] S. Venkataraman, E. Bodzsar, I. Roy, A.

AuYoung, and R. S. Schreiber, “Presto: distributed

machine learning and graph processing with sparse

matrices,” in Proceedings of the 8th ACM European

Conference on Computer Systems. ACM, 2013, pp. 197–

210.

[9] A. Matsunaga, M. Tsugawa, and J. Fortes,

“Cloudblast: Combining mapreduce and virtualization on

distributed resources for bioinformatics applications,” in

eScience, 2008. eScience’08. IEEE Fourth International

Conference on. IEEE, 2008, pp. 222–229.

[10] J. Wang, D. Crawl, I. Altintas, K. Tzoumas, and

V. Markl, “Comparison of distributed data-parallelization

patterns for big data analysis: A bioinformatics case

study,” in Proceedings of the Fourth International

Workshop on Data Intensive Computing in the Clouds

(DataCloud), 2013.

