
ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 6, Issue 10, October 2019

All Rights Reserved © 2019 IJERCSE 31

A Survey on Different Pattern Matching Algorithms

of Various Search Engines
[1]

 SS.Swapna,
[2]

Yashdeep Jha,
[3]

Syed Zaheed,
[4]

Keertik Dewangan,
[5]

Sayyed Mujahid Pasha

[1]
Assistant Professor, Department of CSE, Pallavi Engineering College

[2][3][4][5]
B.Tech-CSE, Pallavi Engineering College,Nagol

Abstract— In Real-time world problems need fast algorithm with minimum error. Now a days many applications are use for

searching results on web. There are many algorithms which are used for searching the results. Pattern matching method is one of

them. In web application people deals with the different types of data, for example text searching, image searching, audio searching

and Video searching. Every search engine uses different search algorithms for handling different types of data. This paper

proposes an analysis and comparison of four algorithms for full search equivalent pattern matching like complexity, efficiency and

techniques. The four algorithms are Naive string search algorithm, Rabin Karp String Search Algorithm, Knuth–Morris–Pratt

algorithm, Boyer–Moore string search algorithm. This paper provides an analysis of above algorithms.

Keywords— Pattern matching, Text searching, Image searching, Audio searching, Video Searching, Search Engines

I. INTRODUCTION

In web search engine every searching operation is done

online. Now a day‟s different search engine are in the

market like Google, yahoo etc. The performance of any

search engine depends on its searching capabilities.

Searching a list for a particular item is a regular task. In

real applications, the list items often are records and the

list implemented as an array of objects. In search engine it

deals with the different type of data (text, Image, Audio,

Video). For handling such type of data there are two types

of searching methods used. Linear and Binary searching

method.

Linear search: finds an item in an unsorted sequence .For

search algorithms, the main steps are the comparisons of

list values with the target value. Counting these for data

models representing the best case, the worst case, and the

average case produces the following table.

TABLE I –LINEAR SEARCH COMPLEXITIES

Cases Complexity

Best Case O(1)

Worst Case O(n)

Average Case O(n)

Binary search algorithm: The binary search follows

Divide and Conquer approach .It first Sorts the unsorted

list, then it finds a middle value .It compares the key

value which we are searching with the middle value if

they are equal then we have successfully searched the

values, if key value is greater then key value then we

search the right sublist and if smaller we search the left

sublist.This process go on till we have got the required

value or we have reached our last value

TABLE II–BINARY SEARCH COMPLEXITIES

Cases Complexity

Best Case O(1)

Worst Case O(log n)

Average Case O(log n)

II . TYPES OF SEARCHES

A. Search by Text - In text searching we enter a text or a

string about which we have to search in the search engine

, then the search engine search all the related documents o

the documents which have that string in them and display

them to us.

B. Search by Image - It is a content-based image retrieval

(CBIR) query technique that involves providing the CBIR

system with a sample image that it will then base its

search upon; in terms of information retrieval, the sample

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 6, Issue 10, October 2019

 All Rights Reserved © 2019 IJERCSE 32

image is what formulates a search query .This effectively

removes the need for a user to guess at keywords or terms

that sometimes may not return a correct result. It also

allows users to discover content that is related to a

specific sample image.

C. Search by Video - There is no generic way currently to

search by video. You can try a few tricks. Search by

image for the thumbnail of the video or search for

keywords related to the video. Search Engines like

Google keep metadata, so searching for meta description

or meta keywords may give results.

D. Search by Audio - In search by audio, the user must

play the audio of a song either with a music player, by

singing or by humming to the computer microphone.

Subsequently, a sound pattern, A, is derived from the

audio waveform, and a frequency representation is

derived from its Fourier Transform. This pattern will be

matched with a pattern, B, corresponding to the waveform

and transform of sound files found in the database. The

audio files in the database whose patterns are matching

the pattern search will be displayed as search results.

III. NEED OF PATTERN MATCHING

Patterrn matching is the process of checking a perceived

sequence of string for the presence of the constituents of

some pattern.Alike pattern recognition, the match usually

has to be same. The patterns have the form sequences of

pattern matching include giving the locations of a pattern

within a string sequence, to output some component of the

matched pattern, and to substitute the matching pattern

with any other string sequence (i.e., search and replace).

Pattern matching concept has many applications

Following figure shows the different applications.

FIG I – APPLICATIONS OF PATTERN

MATCHING

In pattern matching I focused on the web search engine

amongst others application. Now a day‟s almost

everybody use the web application to get the required

results. But peoples are not only searching for text every

time. They may search different type of data like audio,

image and video. To handle such kind of data we need

more efficient method for searching. Pattern matching

will help us to find right and appropriate result. There are

a lot of algorithms used for pattern matching.

IV . ALGORITHMS USED FOR PATTERN

MATCHING

A . Naive string search algorithm - Naïve pattern

searching is the simplest method among other pattern

searching algorithms. It checks for all the characters of

the main string to the pattern. This algorithm is helpful for

smaller texts. It does not need any pre-processing phases.

We are able tofind substring by checking once for the

string. It also does not occupy extra space to perform the

operation. In worst cases the time complexity of Naïve

Pattern Search method can be O(m*n), where n is the size

of string and n is the size of the pattern.

Algorithm:

naivePatternSearch(pattern, text)

Begin

 patLen := pattern Size

 strLen := string size

 for i := 0 to (strLen - patLen), do

 for j := 0 to patLen, do

 if text[i+j] ≠ pattern[j], then

 break the loop

 done

 if j == patLen, then

 display the position i, as there pattern found

 done

End

B. Rabin Karp String Search Algorithm - Rabin-Karp is

another pattern searching algorithm to find the pattern in a

more efficient way. It also checks the pattern by moving

window one by one, but without checking all characters

for all cases, it finds the hash value. When the hash value

is matched, then only it tries to check each character. This

procedure makes the algorithm more efficient.

Algorithm:

rabinKarpSearch(text, pattern, prime)

Begin

 patLen := pattern Length

 strLen := string Length

 patHash := 0 and strHash := 0, h := 1

 maxChar := total number of characters in character set

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 6, Issue 10, October 2019

 All Rights Reserved © 2019 IJERCSE 33

 for index i of all character in pattern, do

 h := (h*maxChar) mod prime

 done

 for all character index i of pattern, do

 patHash := (maxChar*patHash + pattern[i]) mod

prime

 strHash := (maxChar*strHash + text[i]) mod prime

 done

 for i := 0 to (strLen - patLen), do

 if patHash = strHash, then

 for charIndex := 0 to patLen -1, do

 if text[i+charIndex] ≠ pattern[charIndex], then

 break the loop

 done

 if charIndex = patLen, then

 print the location i as pattern found at i position.

 if i < (strLen - patLen), then

 strHash := (maxChar*(strHash –

text[i]*h)+text[i+patLen]) mod prime, then

 if strHash < 0, then

 strHash := strHash + prime

 done

End

C. Knuth–Morris–Pratt algorithm - Knuth Morris Pratt

(KMP) is an algorithm, which checks the characters from

left to right. When a pattern has a sub-pattern appears

more than one in the sub-pattern, it uses that property to

improve the time complexity, also for in the worst case.

Algorithm :

findPrefix(pattern, m, prefArray)

Begin

 length := 0

 prefArray[0] := 0

 for all character index „i‟ of pattern, do

 if pattern[i] = pattern[length], then

 increase length by 1

 prefArray[i] := length

 else

 if length ≠ 0 then

 length := prefArray[length - 1]

 decrease i by 1

 else

 prefArray[i] := 0

 done

End

kmpAlgorithm(text, pattern)

Begin

 n := size of text

 m := size of pattern

 call findPrefix(pattern, m, prefArray)

 while i < n, do

 if text[i] = pattern[j], then

 increase i and j by 1

 if j = m, then

 print the location (i-j) as the pattern is there

 j := prefArray[j-1]

 else if i < n AND pattern[j] ≠ text[i] then

 if j ≠ 0 then

 j := prefArray[j - 1]

 else

 increase i by 1

 done

End

D. Boyer–Moore string search algorithm -

The algorithm scans the characters of the pattern from

right to the left beginning with the rightmost one. In case

of a mismatch or a complete match of the whole pattern, it

uses two pre-computed functions to shift the window to

the right.The two shifts functions are as follows-

• good suffix shift or matching shift : It aligns only

matching pattern characters against target characters

already successfully matched.

• bad character shift or occurrence shift :It avoids

repeating unsuccessful comparisons against a target

character.

Algorithm :

fullSuffixMatch(shiftArray, borderArray, pattern)

Begin

 n := pattern length

 j := n

 j := n+1

 borderArray[i] := j

 while i > 0, do

 while j <= n AND pattern[i-1] ≠ pattern[j-1], do

 if shiftArray[j] = 0, then

 shiftArray[j] := j-i;

 j := borderArray[j];

 done

 decrease i and j by 1

 borderArray[i] := j

 done

End

 partialSuffixMatch(shiftArray, borderArray, pattern)

Begin

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 6, Issue 10, October 2019

 All Rights Reserved © 2019 IJERCSE 34

 n := pattern length

 j := borderArray[0]

 for index of all characters „i‟ of pattern, do

 if shiftArray[i] = 0, then

 shiftArray[i] := j

 if i = j then

 j := borderArray[j]

 done

End

searchPattern(text, pattern)

Begin

 patLen := pattern length

 strLen := text size

 for all entries of shiftArray, do

 set all entries to 0

 done

 call fullSuffixMatch(shiftArray, borderArray, pattern)

 call partialSuffixMatch(shiftArray, borderArray,

pattern)

 shift := 0

 while shift <= (strLen - patLen), do

 j := patLen -1

 while j >= 0 and pattern[j] = text[shift + j], do

 decrease j by 1

 done

 if j < 0, then

 print the shift as, there is a match

 shift := shift + shiftArray[0]

 else

 shift := shift + shiftArray[j+1]

 done

End

IV. TECHNIQUES USED BY ALGORITHMS

In this section we will see what techniques above

algorithms are using -

ALGORITHMS TECHNIQUES

 Naive string search

algorithm

Each character of the pattern

is compared to a substring of

the text which is the length

of the pattern, until there is a

match or a mismatch

Rabin Karp String Search

Algorithm

Hashing

Knuth–Morris–Pratt

algorithm

Two indices l and r into text

t

Boyer–Moore string

search algorithm

Uses good suffix shift and

bad character shift

V. COMPEXITY ANALYSIS OF ALGORITHMS

In this section we will analyze the time complexity of

preprocessing and matching as well as the space

complexity of the string matching algorithms.
ALGORITHMS TIME COMPLEXITY SPACE

COMPLEXITY

PRE-

PROCESSING

MATCHING

Naive string

search

algorithm

0 (none) O(nm) O(1)

Rabin Karp

String Search

Algorithm

O(m) avg O(n +

m)

 worst O(n

· m)

O(m)

Knuth–

Morris–Pratt

algorithm

O(m) O(n) O(m)

Boyer–Moore

string search

algorithm

O(m + |Σ|) Ω(n/m),

O(n)

O(m+|∑|)

VI. CONCLUSION

Internet is a very impotant part of our lives .Today life

without internet can‟t be imagined and we spend lots of

our time in the intenet searching ,from searching videos

on internet , searching your favourite series on Netflix to

searching any required information on google . Searching

is the first step we do on internet. So for efficient and fast

searching we need good pattern matching algorithms.In

our paper we have taken four algorithm and we have

came to conclusion that according to preprocessing time

complexity Boyre-Moore string search algorithm is the

most efficient and according to matching time complexity

Knuth-Morris-Pratt algorithm is the most efficient..

REFERENCES

[1] Rahul B. Diwate and . Satish J. Alaspurkar, “On

Study of Different Algorithms for Pattern

Matching”, International Journal of Advanced

Research in Computer Science and Software

Engineering 3(3), March - 2013, pp. 615-620.

ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 6, Issue 10, October 2019

 All Rights Reserved © 2019 IJERCSE 35

[2] Ananthi Sheshasayee and G. Thailambal, A

comapartive analysis of single pattern matching

algorithm in text mining , 2015 International

Conference on Green Computing and Internet of

Things (ICGCIoT),IEEE.

[3] Koloud Al-Khamaiseh and Shadi ALShagarin,

“A Survey of String Matching Algorithms”,

Koloud Al-Khamaiseh Int. Journal of

Engineering Research and Applications, ISSN :

2248-9622, Vol. 4, Issue 7(Version 2), July

2014, pp.144-156.

[4] A.A.PUNTAMBEKAR,Design Of Analysis Of

Algorithm,R15 edition 2017,Techmical

Publication.

