
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 7, July 2021

33

An Ensemble Classification Model For Software

Defect Prediction
[1] Baldeep Kaur,

[2]
Dr. Sumeet Kaur Sehra,

[3]
Dr. Daljeet Singh

[1] Student, Guru Nanak Dev Engineering College, Ludhiana
[2][3] Assistant Professor, Guru Nanak Dev Engineering College, Ludhiana

Abstract: Software developed for a specific requirement is called software product. Engineering at the same time, is related to the

product development by means of explicit technical fundamentals and techniques. The software defect prediction have various

phases which are include data set input, pre-processing, feature extraction and classification. The various classification schemes are

applied for the software defect prediction in this research work. The classification schemes like Gaussian Naive Bayes, Bernoulli

Naive Bayes, Random Forest and Decision Tree are used for the software defect prediction. To improve performance for the

software defect the ensemble classification method is designed in this research work. The proposed ensemble classification method

is the combination of PCA algorithm with class balancing. The proposed model is implemented in python and results are analyzed

in terms of Accuracy, Precision and Recall.

Keywords: Software Defect, Gaussian Naive Bayes, Bernoulli Naive Bayes, Random Forest, C4.5, PCA, Class Balancing

1. INTRODUCTION

Software is referred not just a program code but the much

above. A program signifies an executable code for some

computing applications. Software can be defined as a

compilation of executable programming code, related

libraries and documentations. Software developed for a

specific requirement is called software product. Software

defect along with an intrinsic element of software

product, is also an important aspect of software quality.

Software defects are an unavoidable co-product of the

developed software [1]. In addition to this, the guarantee

of software quality assurance is not so easy and requires a

lot of time too. There are different ways to define defects,

such as in terms of quality. However, the defects are

generally defined in the form of deviations from

specifications or expectations which may be the reason of

failure in functioning. In general, various software

projects do not have sufficient time and workforce

available for eliminating all the defects prior to the release

of a specific product. This may affect the overall product

quality and probably the status of an organization that

deliver the product. In this condition, the potential level of

several techniques with the ability of providing alternate

methods for assuring the quality of software product

becomes vast. The defects may be present in all products

whether it is a small program or large-scale software

system. A number of defects can be discovered without

any complexity. But some defects hidden deeply cannot

be found easily. Some defects do not harm much but

some could make huge loss of property or even cause

threat to life. Plenty of time and labour of developers,

clients and maintenance staff, is required from the

primary designing process to the ultimate software usage.

The efficient prediction of software defects is a must for

the assurance of software quality. Software defect

prediction techniques may divert attention of quality

assurance activities towards the code that is most

vulnerable to defect. These techniques can provide more

resources to resolve the complex issues. DeP (Defect

Prediction in Software) refers to the process of

determining segments of a software system that may

include defects. In software engineering, prediction of

software defect (Bug) is a very promising research

domain. The teams of quality assurance are able to

efficiently distribute available resources for testing and

examining software products using the list of defect-prone

software objects provided by defect prediction models. In

the software lifecycle, the early use of defect prediction

models enables experts to concentrate their testing team in

such a way that the testing of the parts recognized as

“prone to defects” can be performed with more accuracy

as compared to the other portions of the software product.

This provision may reduce the workforce costs

throughout development and also give some relaxation to

efforts made in maintenance. The construction of defect

prediction models depends on two approaches [2]. The

first approach makes use of measurable features of the

software system known as Software Metrics, for

constructing a De-model. The second approach on the

ISSN (Online) 2394-6849

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 7, July 2021

 34

other hand uses fault data from an alike software project

to do so. When the defect prediction model is built, it can

be implemented to future software projects. In this way,

experts can detect bug-prone sections of a software

system. There are mainly two categories of Software

defect prediction techniques. The techniques in the first

category are used for predicting the various defects in the

product module/class while the techniques in the second

category are used for classifying the module/class in

terms of defected or non-defected.

Figure 1.1: Software Defect Prediction Techniques

Machine learning models make use of data mining

methods and statistical techniques-based algorithms for

classifying defects. The models provide the classification

outcomes of software elements as faulty or non-faulty by

using some prediction variables as input information. The

use of machine learning algorithms is quite popular

among researchers for the classification of software parts.

Figure 1.1 shows a general process of software defect

prediction based on machine learning.

Figure 1.2: General Process of Software Defect Prediction

As shown in the figure, the first step towards the

construction of a software defect prediction model is to

generate data patterns from software databases that

include issue tracking systems, version control systems

etc. The source codes and some commit messages occur

in the version control systems. The issue tracking systems

on the other hand contain some defect info. The

prediction granularity states that every pattern has the

ability to represent a technique, a class, a source code file,

a package or a change in code. A number of defect

prediction attributes taken out from the software

repositories generally occur in the pattern. The intricacy

of software and its development process is represented by

the value of the metrics. The labelling of a pattern can be

labelled as defected or non-defected on the basis whether

the pattern includes defects or not. Afterward, a group of

training patterns can be used for constructing the defect

ISSN (Online) 2394-6849

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 7, July 2021

 35

prediction models on the basis of achieved metrics and

labels [3]. At last, the prediction model can do the

classification of a new patter into defective or non-

defective.

II. LITERATURE REVIEW

Guo et al, 2018 emphasized on transmitting strong defect

capability of classification for predicting effort-aware

software defect effectively [4]. The connection between

the classification performance and the cost-effectiveness

curve was studied in experimental manner in which 6

open-source software data sets had carried out. The

results indicated that the skewed distributions of change

size were monitored enormously due to which the lack of

association had occurred between performance while

classifying and the potential for finding effective test

orderings while detection defects. All the effort-aware

approaches which connected high classification capacity

for providing effort-aware performance effectively had

enabled through trimming. At last, it was analyzed that

the effort-aware models were governed the Effort

distributions. The Trimming was proved the best practical

technique for handling this issue.

 Shan et al, 2014 analyzed that software security was

enhanced when the testers assisted in locating the

software defects in accurate way through predicting the

software defect [5]. In defects dataset, the accuracy in

predicting the defects was reduced by data redundancy

that occurred due to the overmuch attributes. This paper

suggested a LLE-SVM based model for dealing with the

issue. The implementation of support vector machine was

done as basic classifier in this model. The data

redundancy was addressed using locally linear embedding

algorithm that had potential to maintain local geometry.

The technique included ten-fold cross validation and grid

search optimized the parameters in support vector

machine. The NASA defect data set had employed to

validate the comparison of locally linear embedding and

support vector machine with SVM model experimentally.

It was demonstrated in the outcomes that the suggested

model outperformed the SVM model and it had capability

for avoiding the accuracy decrease that occurred due to

the data redundancy.

Punitha et al, 2013 Assisting developers for recognizing

defects of software on the basis of existing software

metrics in which data mining schemes were implemented.

In this way, the software quality was enhanced that

ultimately initiated the reduction of the software

development cost in the development and maintenance

phase [6]. The defective modules had recognized that was

emphasized in this research. Consequently, the

examination of the scope of software was required to

prioritize the defects. The test cases were carried out for

implementing the test cases in the predicted modules by

the developers. This suggested technique assisted for the

recognition of modules in which immediate attention was

necessitated and enhancing the reliability of the software

faster in which the defects with higher priority were

handled initially. The major purpose of this technique was

that the classification accuracy of the Data mining

algorithm was enhanced. First of all, the existing

classification algorithms were suggested for the

evaluation and initialization of this process. The Neural

network algorithm was also suggested on the basis of its

vulnerability with a degree of fuzziness in the hidden

layer for improving the classification accuracy.

EboBennin et al, 2018 suggested a new and effectual

synthetic oversampling approach named MAHAKIL used

in software defect datasets. This approach was designed

on the basis of the chromosomal theory of inheritance [7].

With this theory, the interpretation of two different sub-

classes was performed as parents and a new instance was

carried out in which various traits were inherited from

each parent and contributed to the diversity in the data

distribution. The MAHAKIL was compared with five

other sampling approaches for which twenty releases of

defect datasets were carried out from the PROMISE

repository and 5 prediction models. It was demonstrated

in the experiments that the prediction performance was

enhanced for all the models and superior and more

considerable of values were obtained using MAHAKIL as

compared to other oversampling approaches on the basis

of robust statistical tests .

Wu et al, 2017 emphasized on providing an effectual

solution for dealing with CSDP and WSDP issues while

predicting software defect [8]. The SSDL that was an

effectual ML method was presented in predicting the

defect and a SSDL approach was suggested for approach

for CSDP and WSDP. The useful information was carried

out in limited labelled defect data and a large amount of

unlabelled data in the semi-supervised structured

dictionary learning approach. Two public datasets were

employed to conduct the experiments. The results

demonstrated that a superior performance for predicting

defects was obtained from the semi-supervised structured

dictionary learning as compared to related SSDP

techniques in the CSDP scenario.

Mausa et al, 2014 proposed a tool demonstration in which

a systematic data collection process was executed for

software defect prediction datasets that were carried out

from the open source bug tracking and the source code

ISSN (Online) 2394-6849

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 7, July 2021

 36

management repositories [9]. This tool dealt with the

major challenging issue that was to link the information

of the same entity from these two sources. The interfaces

were employed to bug and source code repositories using

tool and the other tools were utilized to compute the

software metrics. At last, the user was allowed for

developing datasets in predicting the software defect

although the user had not aware about the all the details

behind this complex task.

Al-Jamimi et al, 2016 discussed that the Software defect

prediction was one of the disciplines that assisted in

predicting the defects proneness of future modules [10].

Software metrics were implemented in this type of

predication. But there was an association between the

predication metrics and uncertainty. Therefore, it was

essential to express these metrics in linguistic terms for

dealing with ambiguity and uncertainty. The software

metrics and opinions of experts were two categories of

knowledge that had carried out as input in prediction

models. A framework was suggested to generate a fuzzy

logic-based software predication model in which various

set of software metrics had utilized. A generic set of

metrics was offered in this paper that was utilized for

predicting the software defects. The real software projects

data that utilized a Takagi-Sugeno fuzzy inference engine

in the prediction of software defects had implemented for

the authentication of performance of suggested Fuzzy-

based models and the promising validation outcomes had

obtained.

Jing Sun et al, 2018 suggested a technique named

GFKSDP for dealing with the issue of various

distributions that located between source domain and

target domain [11]. The differences of source and target

domains were minimized when an infinite number of

subspaces was combined that was used for characterizing

the changes of geometric and statistical properties and

carried out from source domain to target domain using

geodesic flow kernel software defect prediction

technique. The important parameters were determined in

adaptive manner in this technique for reducing the

computational complexity. The suggested technique

outperformed the conventional studies in unsupervised

learning. The AEEEM and Relink datasets were

employed to conduct the experiments. The results proved

that the performance of cross-project prediction was

enhanced using suggested technique. This technique

performed better than the techniques in unsupervised

learning.

Ayon et al, 2019 recommended a technique in which GA

was implemented for the selection of attributes [12].

Then, PSO was carried out for generating a cluster of

selected attributes. Various NN techniques named FNN,

RNN and ANN were employed for training the model. At

last, precision, sensitivity, precision, NPV, F1 score, and

MCC were computed. There were 5 various datasets that

had carried out from NASA a promise software

engineering repository in this study. The greatest accuracy

results were acquired through DNN. The results of

experiments represented that recommended method was

perfect for predicting the defects of software.

Xia et al, 2014 emphasized on realizing the significance

of various process metrics while predicting the defects for

TT&C software and a series of experiments had

performed for which many combinations sets of software

metrics were employed [13]. The results of experiments

demonstrated that the performance to forecast the defect

was enhanced through the combination set of CM +

MMSLC + HM and the prediction performance for TT&C

software was enhanced under the influence of the history

change process metrics. For the future work, the

importance of each process metric was analyzed in detail.

III. RESEARCH METHODOLOGY

The proposed methodology is based on the various

classifies like random forest, Gaussian Naïve Bayes,

Bernoulli Naïve Bayes, Decision Tree. The ensemble

classifier is generated for the software defect prediction.

The ensemble classifier is the combination of Gaussian

naive Bayes, Bernoulli Naive Bayes, Random Forest and

C4.5. In the third phase of the research work, the feature

extraction technique called PCA is applied with the

ensemble classifier with class balancing. The details of

each classifier are explained below:-

A. Decision Tree

DTs are trees in which instances are classified after

sorting on the basis of feature values. A feature is

illustrated in an instance for the classification using every

node in a DT and a value which can be assumed by the

node is signified using each branch. Initially, the

classification of instances is done at the root node and

sorted on the basis of their values of attribute. The DTs

namely C5.0, Id3, or CART are utilized to handle the

real-world datasets in effective manner. The C5.0 is a DT

which was developed ID3 depending on the information

gain due to the partiality of the ID3 of multi-valued

features. C5.0 was developed for dealing with that

problem with the computation of the information gain

ration obtained for each feature. Afterward, the attribute

consists of the maximal Information Gain ration value is

ISSN (Online) 2394-6849

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 7, July 2021

 37

chosen as a root node of the training dataset. The attribute

that has the maximum gain ratio is selected for splitting so

as the needed information is alleviated while predicting a

given instance in the resulting separation of a feature. The

evaluation of Gain Ration for attribute A is presented as:

 ()
 ()

 ()

 () () ()
Where D is the training dataset

 () ∑ () (

)

 () | | | | where | |is the number of the tuples

included in the class used in the training dataset and |D|

is the number of the tuples of the training dataset, and n

represents the number of the values of the class.

 () ∑ (
| |

| |
 (∑

| |

| |

| |

)

Where | |is the number of the tuples of the value of

the attribute A in the training dataset and | |denotes the

tuples of the training dataset and n is the number of the

values of attribute A. | |corresponds to the number of

the tuples of class | |associated with the value ai of the

attribute A and m, the number of the classes of class C.

B. Bernoulli Naive Bayes

The NB training and classification algorithms are carried

out in the Bernoulli Naive Bayes for data whose

distribution is done in accordance with the multivariate

Bernoulli distributions. This implies that there are

numerous attributes. Moreover, every attribute is deduced

as a binary-valued variable. Consequently, the samples

are necessitated for the class that are represented as

binary-valued feature vectors. When any other kind of

data is handed, a Bernoulli Naive Bayes instance are

binarised its input. The decision rule for Bernoulli naive

Bayes is depending on

 (|) (|) ((|)) ()

that differs from the multinomial Naive Baye’s rule that

penalized the non-occurrence of a attribute that is an

indicator for class in which the multinomial variant

would simply ignore a non-occurring attribute. This

classifier is utilized and trained using word occurrence

vectors in the text classification. The Bernoulli Naive

Bayes has provided the superior performance on some

datasets, especially those with shorter documents. It is

desirable for the computation of the models, if time

allows.

C. Gaussian Naive Bayes

One typical way for handling the continuous features in

the NB classification is that Gaussian distributions are

utilized for the signification of the probabilities of the

features conditioned on the classes. Therefore, each

attribute is described through a Gaussian probability

density function (PDF) as

 (
)

The Gaussian PDF has the shape of a bell and is defined

using the following equation:

 ()()

√

()

In which is the mean and is the variance. In NB, the

parameters required are in the order of () in which

is the number of attribute and represents the number of

classes. In particular, there is a requirement of defining a

normal distribution () (
)for every

continuous attribute. The parameters of such normal

distributions is acquired with

 |

∑

 |

∑

In this is the number of instances in which
and is the number of total instances utilized while

training. The calculation of ()for all the classes is

easy with the help of relative frequencies such that

 ()

D. Random forest

RF is an ensemble learning algorithm. This basic

principle of the algorithm is that a small DT is developed

with few attributes is a computationally cheap procedure.

When various small, weak DTs are developed in parallel,

the trees are integrated for forming a single, strong learner

after averaging or obtaining the majority vote. The RFs

are often investigated as the most accurate learning

algorithms to date in training.

Formally, a RF is a predictor in which a collection of

randomized base regression trees are comprised as

* () + are

independent and identically distributed outputs of a

randomized variable . These integration of RTs is done

for developing the aggregated regression estimate

 ̅ () , ()-

In which represents the expectation in terms of the

random parameter, conditionally on and the data set

 . In the following, to lessen a notation a little, the

dependency of the estimates would be excluded in the

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB

ISSN (Online) 2394-6849

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 7, July 2021

 38

sample, and written to illustrate ̅ () rather than

 ̅ (). In practice, Monte Carlo computed the above

expectation when the M RTs are produced and the

average of the individual outcomes is taken. The

randomizing variable is carried out for determining

performance of the successive cuts while developing the

individual trees in which selection of the coordinate to

split and position of the split are comprised. The variable

 is deduced as the independent of and the training

sample .

E. Principal Component Analysis

PCA is a statistical strategy using which the collection of

interrelated factors are changed into a set of linearly

unrelated subsets which are depending on a

transformation and provides the uncorrelated variables.

The PCA is also called orthogonal linear transformation

that assisted in generating a projection of the initial

dataset to another projection system with the end

objective in which the biggest variance includes a

projection of the first coordinate, even as the second

biggest variance consists of a projection of the second

coordinate that describes that it is vertical to the first

component. In essence, a linear transformation is

positioned using PCA that is denoted as
 in

which , and for improving the variance of

the data within the projected space. The

* +,
 , and is used to

express the data matrix and the transformation can be

described with the help of a set of p-dimensional vectors

of weights * +,
 , which

matches every vector of X to a

 () |()

For boosting the variance, an initial weight has to

observe to the condition defined as follows:

 | | *∑ ()
 +

A further expansion of the previous condition is provided

as:

 ‖ ‖ *‖ ‖
 +

 ‖ ‖ *
 +

A symmetric grid such as the , can be analysed in

efficient way, when the biggest eigenvalue of the matrix

is achieved, as is the related eigenvector. After

obtaining the , the primary principal component can be

inferred through the projection of initial data matrix

onto the in the space which is provided in the

transformation. The further segments are obtained along

these lines subsequent to the subtraction of the newly

obtained components.

 Figure 3.1: Proposed Methodology

IV. RESULTS AND DISCUSSION

In this work ”CM1/Software Defect Prediction” which is

available from PROMISE SE Repository is examined and

used. It contains 498 records and 22 attributes (5 different

lines of code measure, 3 McCabe metrics, 4 base Halstead

measures, 8 derived Halstead measures, a branch count,

and 1 goal field). This sample data is chosen in the work

because it comes from a legitimate source and is freely

START

Input dataset for the defect

prediction

Apply pre-processing phase to

remove missing and redundant

values

C4.5 Bernoulli

Naive

Bayes

Random

Forest

Prepare training set based

on above classifiers

Apply voting classifier

for the prediction
Input Test

Set

Analyse performance in

terms of accuracy,

precision, recall

STOP

Gaussian

Naive

Bayes

Apply PCA Algorithm for

feature reduction

ISSN (Online) 2394-6849

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 7, July 2021

 39

available.

Figure 4.1: PCA with Class Balancing and Ensemble

Classifier

As shown in figure 4.1, the class balancing with PCA and

ensemble classifier is the combination of four classifiers

which are Gaussian Naive Bayes, Bernoulli Naive Bayes,

Random Forest and C4.5

The results of all the models which are implemented are

shown in terms of accuracy, precision and recall. The

results of all the classifier are shown in table 1

Table 1. Result Analysis

Model Name Accuracy % Precision % Recall %

Bernoulli NB 74 15.15 31.25

C4.5 84.67 23.08 18.75

Gaussian NB 80.67 11.76 12.50

MLP Classifier 82.67 18.75 18.75

SVC(kernel=-

linear)

88.67 33.33 6.25

Random Forest 87.33 20 6.25

Proposed

Model

96.67 93 97

Figure 4.2: Performance of Models

The various classifiers like Bernoulli Naive Bayes,

Gaussian Naive Bayes, Random Forest, Decision tree,

MLP and SVM are applied for the software defect

prediction. As shown in figure 4.2, when the individual

classifier are applied no feature extraction algorithm like

PCA or class balancing is applied for the software defect

prediction. The proposed model is the combination of

Bernoulli naive Bayes, Gaussian Naive Bayes, Random

forest, C4.5 and also PCA is applied for the feature

extraction with class balancing. The proposed Model give

maximum accuracy, precision and recall as compared to

other individual classifiers for the software defect

prediction.

CONCLUSION

Software defect along with an intrinsic element of

software product, is also an important aspect of software

quality. Software defects are an unavoidable co-product

of the developed software. In addition to this, the

guarantee of software quality assurance is not so easy and

requires a lot of time too. There are different ways to

define defects, such as in terms of quality. However, the

defects are generally defined in the form of deviations

from specifications or expectations which may be the

reason of failure in functioning. In this research work,

various individual like Gaussian Naive Bayes, Bernoulli

Naive Bayes, Random Forest, C4.5, SVM and MLP are

implemented for the software defect prediction. The

ensemble classifier is generated for the software defect

prediction which is the combination of Gaussian Naive

Bayes, Bernoulli Naive Bayes, Random forest and C4.5

respectively. The feature extraction technique called PCA

is merged with the ensemble classifier and also class are

balanced for the software defect prediction. It is analyzed

that model in which ensemble classifier is applied with

feature extraction and class balancing give maximum

accuracy of 96.67 percent as compared to other

classifiers.

REFERENCES

[1] L. Zhang and Z. Shang, “CLASSIFYING

FEATURE DESCRIPTION FOR SOFTWARE

DEFECT,” pp. 10–13, 2011.

[2] J. Wang, B. Shen, and Y. Chen, “Compressed C4

. 5 Models for Software Defect Prediction,” vol. 2, no. 1,

pp. 4–7, 2012, doi: 10.1109/QSIC.2012.19.

[3] Y. Chen and B. Ge, “Research on Software

Defect Prediction Based on Data Mining,” vol. 1, pp.

563–567, 2010.

[4] Y. Guo and M. Shepperd, “Poster : Bridging

Effort-Aware Prediction and Strong Classification - a

Just-in-Time Software Defect Prediction Study,” no. 1,

ISSN (Online) 2394-6849

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 7, July 2021

 40

pp. 325–326, 2018.

[5] C. Shan, H. Zhu, C. Hu, J. Cui, and J. Xue,

“Software Defect Prediction Model Based on Improved

LLE-SVM,” no. Iccsnt, pp. 530–535, 2015.

[6] T. Nadu, “Software Defect Prediction Using

Software Metrics - A survey,” pp. 2–5.

[7] K. E. Bennin, J. Keung, P. Phannachitta, and A.

Monden, “MAHAKIL : Diversity based Oversampling

Approach to Alleviate,” vol. 5, no. 1903, p. 3182520,

2018.

[8] F. Wu et al., “Cross-project and Within-project

Semi-supervised Software Defect Prediction Problems

Study Using a Unified Solution,” pp. 39–41, 2017, doi:

10.1109/ICSE-C.2017.72.

[9] G. Mauˇ and T. G. Grbac, “Software Defect

Prediction with Bug-Code Analyzer - a Data Collection

Tool Demo.”

[10] H. A. Ai-jamimi, “Toward Comprehensible

Software Defect Prediction Models Using Fuzzy Logic,”

pp. 127–130, 2016.

[11] H. Iru and U. S. Hihfw, “Manifold Learning for

Cross-project Software Defect Prediction,” 2018 5th

IEEE Int. Conf. Cloud Comput. Intell. Syst., pp. 567–571,

2018.

[12] S. I. Ayon, “Neural Network based Software

Defect Prediction using Genetic Algorithm and Particle

Swarm Optimization,” 2019 1st Int. Conf. Adv. Sci. Eng.

Robot. Technol., vol. 2019, no. Icasert, pp. 1–4, 2019.

[13] Y. Xia, “Analyzing The Significance of Process

Metrics for TT & C Software Defect Prediction.”

