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Abstract: Software developed for a specific requirement is called software product. Engineering at the same time, is related to the 

product development by means of explicit technical fundamentals and techniques. The software defect prediction have various 

phases which are include data set input, pre-processing, feature extraction and classification. The various classification schemes are 

applied for the software defect prediction in this research work. The classification schemes like Gaussian Naive Bayes, Bernoulli 

Naive Bayes, Random Forest and Decision Tree are used for the software defect prediction. To improve performance for the 

software defect the ensemble classification method is designed in this research work.  The proposed ensemble classification method 

is the combination of PCA algorithm with class balancing. The proposed model is implemented in python and results are analyzed 

in terms of Accuracy, Precision and Recall. 
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1. INTRODUCTION 

 

Software is referred not just a program code but the much 

above. A program signifies an executable code for some 

computing applications. Software can be defined as a 

compilation of executable programming code, related 

libraries and documentations. Software developed for a 

specific requirement is called software product. Software 

defect along with an intrinsic element of software 

product, is also an important aspect of software quality. 

Software defects are an unavoidable co-product of the 

developed software [1]. In addition to this, the guarantee 

of software quality assurance is not so easy and requires a 

lot of time too. There are different ways to define defects, 

such as in terms of quality. However, the defects are 

generally defined in the form of deviations from 

specifications or expectations which may be the reason of 

failure in functioning. In general, various software 

projects do not have sufficient time and workforce 

available for eliminating all the defects prior to the release 

of a specific product. This may affect the overall product 

quality and probably the status of an organization that 

deliver the product. In this condition, the potential level of 

several techniques with the ability of providing alternate 

methods for assuring the quality of software product 

becomes vast. The defects may be present in all products 

whether it is a small program or large-scale software 

system. A number of defects can be discovered without 

any complexity. But some defects hidden deeply cannot 

be found easily. Some defects do not harm much but  

 

some could make huge loss of property or even cause 

threat to life. Plenty of time and labour of developers, 

clients and maintenance staff, is required from the 

primary designing process to the ultimate software usage. 

The efficient prediction of software defects is a must for 

the assurance of software quality. Software defect 

prediction techniques may divert attention of quality 

assurance activities towards the code that is most 

vulnerable to defect. These techniques can provide more 

resources to resolve the complex issues. DeP (Defect 

Prediction in Software) refers to the process of 

determining segments of a software system that may 

include defects. In software engineering, prediction of 

software defect (Bug) is a very promising research 

domain. The teams of quality assurance are able to 

efficiently distribute available resources for testing and 

examining software products using the list of defect-prone 

software objects provided by defect prediction models. In 

the software lifecycle, the early use of defect prediction 

models enables experts to concentrate their testing team in 

such a way that the testing of the parts recognized as 

“prone to defects” can be performed with more accuracy 

as compared to the other portions of the software product. 

This provision may reduce the workforce costs 

throughout development and also give some relaxation to 

efforts made in maintenance. The construction of defect 

prediction models depends on two approaches [2]. The 

first approach makes use of measurable features of the 

software system known as Software Metrics, for 

constructing a De-model. The second approach on the 



 
 

ISSN (Online) 2394-6849 
 

International Journal of Engineering Research in Computer Science and Engineering  

(IJERCSE)  

Vol 8, Issue 7, July 2021 
 

                                                     34 

other hand uses fault data from an alike software project 

to do so. When the defect prediction model is built, it can 

be implemented to future software projects. In this way, 

experts can detect bug-prone sections of a software 

system. There are mainly two categories of Software 

defect prediction techniques. The techniques in the first 

category are used for predicting the various defects in the 

product module/class while the techniques in the second 

category are used for classifying the module/class in 

terms of defected or non-defected. 

 
Figure 1.1: Software Defect Prediction Techniques 

 

 

 

 

Machine learning models make use of data mining 

methods and statistical techniques-based algorithms for 

classifying defects. The models provide the classification 

outcomes of software elements as faulty or non-faulty by 

using some prediction variables as input information. The 

use of machine learning algorithms is quite popular 

among researchers for the classification of software parts. 

Figure 1.1 shows a general process of software defect 

prediction based on machine learning. 

 
 

Figure 1.2: General Process of Software Defect Prediction 

As shown in the figure, the first step towards the 

construction of a software defect prediction model is to 

generate data patterns from software databases that 

include issue tracking systems, version control systems 

etc. The source codes and some commit messages occur 

in the version control systems. The issue tracking systems 

on the other hand contain some defect info. The 

prediction granularity states that every pattern has the 

ability to represent a technique, a class, a source code file, 

a package or a change in code. A number of defect 

prediction attributes taken out from the software 

repositories generally occur in the pattern. The intricacy 

of software and its development process is represented by 

the value of the metrics. The labelling of a pattern can be 

labelled as defected or non-defected on the basis whether 

the pattern includes defects or not. Afterward, a group of 

training patterns can be used for constructing the defect 
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prediction models on the basis of achieved metrics and 

labels [3]. At last, the prediction   model can do the 

classification of a new patter into defective or non-

defective.  

II. LITERATURE REVIEW 

Guo et al, 2018 emphasized on transmitting strong defect 

capability of classification for predicting effort-aware 

software defect effectively [4]. The connection between 

the classification performance and the cost-effectiveness 

curve was studied in experimental manner in which 6 

open-source software data sets had carried out. The 

results indicated that the skewed distributions of change 

size were monitored enormously due to which the lack of 

association had occurred between performance while 

classifying and the potential for finding effective test 

orderings while detection defects. All the effort-aware 

approaches which connected high classification capacity 

for providing effort-aware performance effectively had 

enabled through trimming. At last, it was analyzed that 

the effort-aware models were governed the Effort 

distributions. The Trimming was proved the best practical 

technique for handling this issue. 

 Shan et al, 2014  analyzed that software security was 

enhanced when the testers assisted in locating the 

software defects in accurate way through predicting the 

software defect [5]. In defects dataset, the accuracy in 

predicting the defects was reduced by data redundancy 

that occurred due to the overmuch attributes. This paper 

suggested a LLE-SVM based model for dealing with the 

issue. The implementation of support vector machine was 

done as basic classifier in this model. The data 

redundancy was addressed using locally linear embedding 

algorithm that had potential to maintain local geometry. 

The technique included ten-fold cross validation and grid 

search optimized the parameters in support vector 

machine. The NASA defect data set had employed to 

validate the comparison of locally linear embedding and 

support vector machine with SVM model experimentally. 

It was demonstrated in the outcomes that the suggested 

model outperformed the SVM model and it had capability 

for avoiding the accuracy decrease that occurred due to 

the data redundancy.  

Punitha et al, 2013 Assisting developers for recognizing 

defects of software on the basis of existing software 

metrics in which data mining schemes were implemented. 

In this way, the software quality was enhanced that 

ultimately initiated the reduction of the software 

development cost in the development and maintenance 

phase [6]. The defective modules had recognized that was 

emphasized in this research. Consequently, the 

examination of the scope of software was required to 

prioritize the defects. The test cases were carried out for 

implementing the test cases in the predicted modules by 

the developers. This suggested technique assisted for the 

recognition of modules in which immediate attention was 

necessitated and enhancing the reliability of the software 

faster in which the defects with higher priority were 

handled initially. The major purpose of this technique was 

that the classification accuracy of the Data mining 

algorithm was enhanced. First of all, the existing 

classification algorithms were suggested for the 

evaluation and initialization of this process. The Neural 

network algorithm was also suggested on the basis of its 

vulnerability with a degree of fuzziness in the hidden 

layer for improving the classification accuracy.  

EboBennin et al, 2018 suggested a new and effectual 

synthetic oversampling approach named MAHAKIL used 

in software defect datasets. This approach was designed 

on the basis of the chromosomal theory of inheritance [7]. 

With this theory, the interpretation of two different sub-

classes was performed as parents and a new instance was 

carried out in which various traits were inherited from 

each parent and contributed to the diversity in the data 

distribution. The MAHAKIL was compared with five 

other sampling approaches for which twenty releases of 

defect datasets were carried out from the PROMISE 

repository and 5 prediction models. It was demonstrated 

in the experiments that the prediction performance was 

enhanced for all the models and superior and more 

considerable of values were obtained using MAHAKIL as 

compared to other oversampling approaches on the basis 

of robust statistical tests . 

Wu et al, 2017 emphasized on providing an effectual 

solution for dealing with CSDP and WSDP issues while 

predicting software defect [8]. The SSDL that was an 

effectual ML method was presented in predicting the 

defect and a SSDL approach was suggested for approach 

for CSDP and WSDP. The useful information was carried 

out in limited labelled defect data and a large amount of 

unlabelled data in the semi-supervised structured 

dictionary learning approach. Two public datasets were 

employed to conduct the experiments. The results 

demonstrated that a superior performance for predicting 

defects was obtained from the semi-supervised structured 

dictionary learning as compared to related SSDP 

techniques in the CSDP scenario.  

Mausa et al, 2014 proposed a tool demonstration in which 

a systematic data collection process was executed for 

software defect prediction datasets that were carried out 

from the open source bug tracking and the source code 
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management repositories [9]. This tool dealt with the 

major challenging issue that was to link the information 

of the same entity from these two sources. The interfaces 

were employed to bug and source code repositories using 

tool and the other tools were utilized to compute the 

software metrics. At last, the user was allowed for 

developing datasets in predicting the software defect 

although the user had not aware about the all the details 

behind this complex task.  

Al-Jamimi et al, 2016 discussed that the Software defect 

prediction was one of the disciplines that assisted in 

predicting the defects proneness of future modules [10]. 

Software metrics were implemented in this type of 

predication. But there was an association between the 

predication metrics and uncertainty. Therefore, it was 

essential to express these metrics in linguistic terms for 

dealing with ambiguity and uncertainty. The software 

metrics and opinions of experts were two categories of 

knowledge that had carried out as input in prediction 

models. A framework was suggested to generate a fuzzy 

logic-based software predication model in which various 

set of software metrics had utilized. A generic set of 

metrics was offered in this paper that was utilized for 

predicting the software defects. The real software projects 

data that utilized a Takagi-Sugeno fuzzy inference engine 

in the prediction of software defects had implemented for 

the authentication of performance of suggested Fuzzy-

based models and the promising validation outcomes had 

obtained. 

Jing Sun et al, 2018 suggested a technique named 

GFKSDP for dealing with the issue of various 

distributions that located between source domain and 

target domain [11]. The differences of source and target 

domains were minimized when an infinite number of 

subspaces was combined that was used for characterizing 

the changes of geometric and statistical properties and 

carried out from source domain to target domain using 

geodesic flow kernel software defect prediction 

technique. The important parameters were determined in 

adaptive manner in this technique for reducing the 

computational complexity. The suggested technique 

outperformed the conventional studies in unsupervised 

learning. The AEEEM and Relink datasets were 

employed to conduct the experiments. The results proved 

that the performance of cross-project prediction was 

enhanced using suggested technique. This technique 

performed better than the techniques in unsupervised 

learning.   

Ayon et al, 2019 recommended a technique in which GA 

was implemented for the selection of attributes [12]. 

Then, PSO was carried out for generating a cluster of 

selected attributes. Various NN techniques named FNN, 

RNN and ANN were employed for training the model. At 

last, precision, sensitivity, precision, NPV, F1 score, and 

MCC were computed. There were 5 various datasets that 

had carried out from NASA a promise software 

engineering repository in this study. The greatest accuracy 

results were acquired through DNN. The results of 

experiments represented that recommended method was 

perfect for predicting the defects of software.  

Xia et al, 2014 emphasized on realizing the significance 

of various process metrics while predicting the defects for 

TT&C software and a series of experiments had 

performed for which many combinations sets of software 

metrics were employed [13]. The results of experiments 

demonstrated that the performance to forecast the defect 

was enhanced through the combination set of CM + 

MMSLC + HM and the prediction performance for TT&C 

software was enhanced under the influence of the history 

change process metrics. For the future work, the 

importance of each process metric was analyzed in detail.  

 

III. RESEARCH METHODOLOGY 

The proposed methodology is based on the various 

classifies like random forest, Gaussian Naïve Bayes, 

Bernoulli Naïve Bayes, Decision Tree. The ensemble 

classifier is generated for the software defect prediction. 

The ensemble classifier is the combination of Gaussian 

naive Bayes, Bernoulli Naive Bayes, Random Forest and 

C4.5. In the third phase of the research work, the feature 

extraction technique called PCA is applied with the 

ensemble classifier with class balancing. The details of 

each classifier are explained below:-  

 

A. Decision Tree 

DTs are trees in which instances are classified after 

sorting on the basis of feature values. A feature is 

illustrated in an instance for the classification using every 

node in a DT and a value which can be assumed by the 

node is signified using each branch. Initially, the 

classification of instances is done at the root node and 

sorted on the basis of their values of attribute. The DTs 

namely C5.0, Id3, or CART are utilized to handle the 

real-world datasets in effective manner. The C5.0 is a DT 

which was developed ID3 depending on the information 

gain due to the partiality of the ID3 of multi-valued 

features. C5.0 was developed for dealing with that 

problem with the computation of the information gain 

ration obtained for each feature. Afterward, the attribute 

consists of the maximal Information Gain ration value is 
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chosen as a root node of the training dataset. The attribute 

that has the maximum gain ratio is selected for splitting so 

as the needed information is alleviated while predicting a 

given instance in the resulting separation of a feature. The 

evaluation of Gain Ration for attribute A is presented as: 

         ( )  
    ( )

          ( )
 

    ( )      ( )       ( ) 
Where D is the training dataset 

    ( )   ∑  (  )      (  
 

   
) 

 (  )  |    | | | where |    |is the number of the tuples 

included in the class    used in the training dataset and |D| 

is the number of the tuples of the training dataset, and n 

represents the number of the values of the class. 
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Where |    |is the number of the tuples of the value    of 

the attribute A in the training dataset and | |denotes the 

tuples of the training dataset and n is the number of the 

values of attribute A. |    |corresponds to the number of 

the tuples of class |  |associated with the value ai of the 

attribute A and m, the number of the classes of class C. 

B.  Bernoulli Naive Bayes 

The NB training and classification algorithms are carried 

out in the Bernoulli Naive Bayes for data whose 

distribution is done in accordance with the multivariate 

Bernoulli distributions. This implies that there are 

numerous attributes. Moreover, every attribute is deduced 

as a binary-valued variable. Consequently, the samples 

are necessitated for the class that are represented as 

binary-valued feature vectors. When any other kind of 

data is handed, a Bernoulli Naive Bayes instance are 

binarised its input. The decision rule for Bernoulli naive 

Bayes is depending on 

 (  | )   ( | )   (   ( | )) (    ) 

that differs from the multinomial Naive Baye’s rule that 

penalized the non-occurrence of a attribute  that is an 

indicator for class   in which the multinomial variant 

would simply ignore a non-occurring attribute. This 

classifier is utilized and trained using word occurrence 

vectors in the text classification. The Bernoulli Naive 

Bayes has provided the superior performance on some 

datasets, especially those with shorter documents. It is 

desirable for the computation of the models, if time 

allows. 

C.  Gaussian Naive Bayes 

One typical way for handling the continuous features in 

the NB classification is that Gaussian distributions are 

utilized for the signification of the probabilities of the 

features conditioned on the classes. Therefore, each 

attribute is described through a Gaussian probability 

density function (PDF) as 

    (   
 ) 

The Gaussian PDF has the shape of a bell and is defined 

using the following equation: 

  (    )( )  
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In which   is the mean and   is the variance.  In NB, the 

parameters required are in the order of  (   ) in which   

is the number of attribute and   represents the number of 

classes. In particular, there is a requirement of defining a 

normal distribution  (    )   (   
 )for every 

continuous attribute. The parameters of such normal 

distributions is acquired with 
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In this   is the number of instances in which     
and   is the number of total instances utilized while 

training. The calculation of  (   )for all the classes is 

easy with the help of relative frequencies such that 

 (   )  
  
 

 

D. Random forest  

RF is an ensemble learning algorithm. This basic 

principle of the algorithm is that a small DT is developed 

with few attributes is a computationally cheap procedure. 

When various small, weak DTs are developed in parallel, 

the trees are integrated for forming a single, strong learner 

after averaging or obtaining the majority vote. The RFs 

are often investigated as the most accurate learning 

algorithms to date in training.     

Formally, a RF is a predictor in which a collection of 

randomized base regression trees are comprised as 

*  (       )    +               are 

independent and identically distributed outputs of a 

randomized variable  . These integration of RTs is done 

for developing the aggregated regression estimate 

 ̅ (    )    ,  (      )-  

In which    represents the expectation in terms of the 

random parameter, conditionally on   and the data set 

   . In the following, to lessen a notation a little, the 

dependency of the estimates would be excluded in the 

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB
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sample, and written to illustrate  ̅ ( ) rather than   

 ̅ (    ). In practice, Monte Carlo computed the above 

expectation when the M RTs are produced and the 

average of the individual outcomes is taken. The 

randomizing variable   is carried out for determining 

performance of the successive cuts while developing the 

individual trees in which selection of the coordinate to 

split and position of the split are comprised. The variable 

  is deduced as the independent of   and the training 

sample    . 

E. Principal Component Analysis 

PCA is a statistical strategy using which the collection of 

interrelated factors are changed into a set of linearly 

unrelated subsets which are depending on a 

transformation and provides the uncorrelated variables. 

The PCA is also called orthogonal linear transformation 

that assisted in generating a projection of the initial 

dataset to another projection system with the end 

objective in which the biggest variance includes a 

projection of the first coordinate, even as the second 

biggest variance consists of a projection of the second 

coordinate that describes that it is vertical to the first 

component. In essence, a linear transformation is 

positioned using PCA that is denoted as     
   in 

which      , and      for improving the variance of 

the data within the projected space. The   

*             +,      
 ,       and      is used to 

express the data matrix and the transformation can be 

described with the help of a set of p-dimensional vectors 

of weights   *             +,      
 , which 

matches every   vector of X to a 

  ( )   |( )    

For boosting the variance, an initial weight   has to 

observe to the condition defined as follows: 

          | |  *∑ (    )
 +

 
 

A further expansion of the previous condition is provided 

as: 

         ‖ ‖  *‖   ‖
 +

       ‖ ‖  * 
     + 

A symmetric grid such as the    , can be analysed in 

efficient way, when the biggest eigenvalue of the matrix 

is achieved, as   is the related eigenvector. After 

obtaining the   , the primary principal component can be 

inferred through the projection of initial data matrix   

onto the    in the space which is provided in the 

transformation. The further segments are obtained along 

these lines subsequent to the subtraction of the newly 

obtained components. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                        Figure 3.1: Proposed Methodology 

 

IV. RESULTS AND DISCUSSION 

In this work ”CM1/Software Defect Prediction” which is 

available from PROMISE SE Repository is examined and 

used. It contains 498 records and 22 attributes (5 different 

lines of code measure, 3 McCabe metrics, 4 base Halstead 

measures, 8 derived Halstead measures, a branch count, 

and 1 goal field). This sample data is chosen in the work 

because it comes from a legitimate source and is freely 
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available.  

 
Figure 4.1: PCA with Class Balancing and Ensemble 

Classifier 

As shown in figure 4.1, the class balancing with PCA and 

ensemble classifier is the combination of four classifiers 

which are Gaussian Naive Bayes, Bernoulli Naive Bayes, 

Random Forest and C4.5 

The results of all the models which are implemented are 

shown in terms of accuracy, precision and recall. The 

results of all the classifier are shown in table 1 

Table 1. Result Analysis  

Model Name Accuracy % Precision % Recall % 

Bernoulli NB 74 15.15 31.25 

C4.5 84.67 23.08 18.75 

Gaussian NB 80.67 11.76 12.50 

MLP Classifier 82.67 18.75 18.75 

SVC(kernel=-

linear) 

88.67 33.33 6.25 

Random Forest 87.33 20 6.25 

Proposed 

Model 

96.67 93 97 

              

 
Figure 4.2: Performance of Models 

The various classifiers like Bernoulli Naive Bayes, 

Gaussian Naive Bayes, Random Forest, Decision tree, 

MLP and SVM are applied for the software defect 

prediction. As shown in figure 4.2, when the individual 

classifier are applied no feature extraction algorithm like 

PCA or class balancing is applied for the software defect 

prediction. The proposed model is the combination of 

Bernoulli naive Bayes, Gaussian Naive Bayes, Random 

forest, C4.5 and also PCA is applied for the feature 

extraction with class balancing. The proposed Model give 

maximum accuracy, precision and recall as compared to 

other individual classifiers for the software defect 

prediction.  

 

CONCLUSION 

Software defect along with an intrinsic element of 

software product, is also an important aspect of software 

quality. Software defects are an unavoidable co-product 

of the developed software. In addition to this, the 

guarantee of software quality assurance is not so easy and 

requires a lot of time too. There are different ways to 

define defects, such as in terms of quality. However, the 

defects are generally defined in the form of deviations 

from specifications or expectations which may be the 

reason of failure in functioning. In this research work, 

various individual like Gaussian Naive Bayes, Bernoulli 

Naive Bayes, Random Forest, C4.5, SVM and MLP are 

implemented for the software defect prediction. The 

ensemble classifier is generated for the software defect 

prediction which is the combination of Gaussian Naive 

Bayes, Bernoulli Naive Bayes, Random forest and C4.5 

respectively. The feature extraction technique called PCA 

is merged with the ensemble classifier and also class are 

balanced for the software defect prediction. It is analyzed 

that model in which ensemble classifier is applied with 

feature extraction and class balancing give maximum 

accuracy of 96.67 percent as compared to other 

classifiers.  
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