
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

Automated Web Application Vulnerability Scanner

[1]
Pranav Gadekar,

[2]
Samruddhi Kulkarni,

[3]
Shalaka Kulkarni,

[4]
Shruti More

[1][2][3][4]
 Dept. of Computer Engineering, Marathwada Mitra Mandal’s College of Engineering, Pune, India

Abstract---- In recent times, use of web and web-based technologies have become more popular. The web applications are the most

common interface for security-sensitive information and functionality available. As web applications are sources of sensitive data,

they are prone to vast numbers of web-based attacks. The majority of these attacks happen because of vulnerabilities resulting

from input validation problems. Although these vulnerabilities are easy to understand and mitigate, many web developers are

unaware of these security aspects. Which results in more vulnerable web applications on the Internet. Among these, the most

prominent vulnerabilities are SQL Injection and Cross Site Scripting (XSS). We implemented a system which will scan the web

application for the most frequent vulnerabilities in an automated manner. Our system detects flaws in web applications and

presents a comprehensive report.

Keywords— SQL Injection, Cross Site Scripting, Web Application Testing, Security Scanner, Exploitation, Code Injection, Web

Security, Machine Learning, Artificial Intelligence

I. INTRODUCTION

As of January 2020, there have been over 1.74 billion

websites on the web. Hackers attack every 39 seconds, on

the average 2,244 times each day. This gives us the idea

that many websites on the Internet are vulnerable to

different attacks. As of the end of 2019, 42% of publicly

facing websites are prone to SQL Injection and 19% to

Cross Site Scripting attacks. A security researcher has

earned a $25,000 bug bounty after finding a DOM-based

Cross-Site Scripting (XSS) vulnerability in one of the most

popular social media sites ‘Facebook’. Another such

attack, in August 2019, was on the famous coffee chain

‘Starbucks’ web services that created a way to access their

critical database through the SQL Injection Vulnerability.

From the above discussion, we can infer that Security

plays an important role in developing websites.

Unfortunately, web developers are not aware of these

security aspects resulting in more vulnerable websites.

Some of the most commonly occurring ones being SQLi,

XSS, CSRF, Sensitive Data Exposure. So we are

developing a system that will find these vulnerabilities in

given web applications and report them to the user of the

system. We are developing a system that will accept the

target URL from the user.The system will then crawl the

target URL in an Automated way using AI techniques and

collect all the connected URLs. Then it will scan all

collected URLs and it will test different payloads to

exploit the vulnerabilities. Finally, a report will be

generated which will contain the detected vulnerabilities

and payloads used.

II. RELATED WORK

A. Various Vulnerability Scanner: A Survey

• Acunetix Vulnerability Assessment Engine: It’s an

entire web application security testing solution that will

be used both standalone and as a part of complex

environments. It offers built-in vulnerability

assessment and vulnerability management, also as

many options for integration with market-leading

software development tools. It is not an open-source

tool. It is the most expensive tool available.

• Burp Suite Web Vulnerability Scanner: Burp Scanner

uses PortSwigger’s world-leading research to assist its

users to hunt out an honest range of vulnerabilities in

web applications, automatically.

• Qualys Web Application Scanner: WAS’ dynamic

deep scanning covers all apps on your perimeter, in

your internal environment and under active

development, and even APIs that support your mobile

devices. It also covers public cloud instances and

provides you instant visibility of vulnerabilities like

SQLi and XSS.

• Nessus Vulnerability Scanner: Nessus is the

vulnerability assessment solution for security

practitioners. The latest intelligence, rapid updates, an

easy-to-use interface. It is also the costlier one.

B. Analysis of Vulnerability Scanning

Machine Learning for Web Vulnerability Detection The

Case of Cross-Site Request Forgery published within the

year 2020 by Stefano Calzavara, Mauro Conti, Riccardo

Focardi, Alvise Rabitti, Gabriele Tolomei. It has the key

advantage of offering a language-agnostic vulnerability

 43

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

detection approach, which abstracts from the complexity

of scripting languages and offers a consistent interface to

the widest possible range of web applications. [1]

An efficient algorithm and tool for detecting dangerous

website vulnerabilities in the year 2020 and written by

Hoang Viet Long, Tong Anh Tuan, David Taniar, Nguyen

Van Can, Hoang Minh Hue. The proposed new technique

has the advantage of detecting attacks in nested SQL

queries and giving a good performance. [2]

An Automated Composite Scanning Tool with Multiple

Vulnerabilities within the year 2019 published by Xun

Zhang, Jinxiong Zhao, Fan Yang, Qin Zhang, Zhiru Li, Bo

Gong, Yong Zhi, Xuejun Zhang. It enables the automatic

detection tool to implement automatic vulnerability

scanning. [8]

A Distributed Vulnerability Scanning on Machine

Learning in the year 2019 by Xiaopeng TIAN, Di TANG,

establishing standardized and quantified data sets for

different industries and different businesses is of great help

to improve the quality of testing. [7]

Commix: automating evaluation and exploitation of

command injection vulnerabilities in Web applications

published within the year 2019 by Anastasios

Stasinopoulos, Christoforos Ntantogian and Christos

Xenakis. It supports a plethora of functionalities that

attempt to cover various exploitation scenarios such as

different authentication mechanisms, custom headers,

tornet working, attack vectors produced by programming

languages, system user enumeration. [6]

Dimitris E. Simos, Jovan Zivanovic, Manuel Leithner

proposed Automated Combinatorial Testing for Detecting

SQL Vulnerabilities in Web Applications in the year 2019.

It demonstrates that our approach can successfully evade

faulty filtering mechanisms. [5]

III. WEB SECURITY VULNERABILITIES

A. SQL Injection

SQL injection attacks are one among the topmost threats in

database-centric web applications and SQL injection

vulnerabilities are the foremost serious Vulnerability

types. SQL Injection allows the attacker to gain control

over the database of an application. [7]

Every other website needs input from the user for a variety

of reasons and if they are not validated properly, they

might lead to some critical issues. Consider a login

function where the user has to provide a username and

password. These credentials are then validated at the

backend through SQL query statements and if they are

correct, then the user is successfully logged in.

Now let’s consider a situation where it can be abused. If

the user provides some malformed inputs and the

application accepts it as it is, then the attacker can leverage

this to perform a database attack. From Fig. 2 we can see

that the attacker Alice is providing username as ’admin” ;–

’ and some arbitrary password.

Fig. 1. SQL Injection - User’s Perspective

This results in breaking of the structure of the SQL query

used at the backend. So the effective query will be

’SELECT * FROM Users WHERE Username=”admin”;–

” AND Password=”random”;’. This will to lead to a

change in the application logic, as the double-quote

entered in the username will match the starting double-

quote of the query and as the ’–’ is considered as an

identifier for comment in most of the relational databases,

it simply comments out the succeeding part of the query.

So the new query will be ’SELECT * FROM Users

WHERE Username=”admin”;’. The attacker can now log

in to an account without knowing the password.

Fig. 2. SQL Injection - Attacker’s Perspective

 44

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

B. Cross Site Scripting

The Cross Site Scripting attack is a critical vulnerability

that affects web application’s security. XSS attack is an

injection of malicious script code into the web application

by the attacker in the client-side within user’s browser or

in the serverside within the database, this malicious script

is written in JavaScript code and injected within untrusted

input data on the web application [8].

Many applications provide the facility to search for

specific content. Whenever the user searches for the

required content, the relevant results are displayed on the

webpage along with a search keyword entered by the user.

Fig. 3. XSS - User’s Perspective

Now let us consider the attacker’s perspective. The

malicious user makes use of this search functionality as

any of the normal user and checks whether the searched

keyword gets reflected on the resultant page returned by

the application. If it succeeds, then the attacker comes to

know that there is a possibility of XSS to take place at that

particular location.

If the application does not perform either encoding or

filtering on the search query given by the user, then it

might be possible for an attacker to break out of the

previous HTML tag and insert a new one. From the figure

given below, we can see that the attacker is able to insert a

new script tag that can be used for malicious purposes.

Being able to insert a new script tag can have several

consequences, including but not limited to, stealing session

cookies, bypassing CSRF protections, theft of user’s

personal and sensitive data. In some extreme scenarios, it

might be possible to exploit the user’s browser by

leveraging the XSS.

Fig. 4. XSS - Attacker’s Perspective

IV. PROPOSED SYSTEM

A. System Architecture

Fig. 5. System Architecture

 45

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

B. Project Scope

• If the web application is not having the robots.txt file

then the user has to explicitly specify the restricted

URLs.

• The system will scan the target application and check if

the web application is having any of these

vulnerabilities:

– SQL Injection

– Cross Site Scripting

• The report will be generated consisting of endpoint

affected, payload used, and generalized remediation.

C. User classes and characteristics

• WebSpider:

– Robots.txt Parsing

∗ Checks for the presence of the robots.txt file and if

present, collect allowed and disallowed URLs.

– URL Parsing:

∗ All URLs specified within the anchor tag from the

current page are saved in a List.

∗ Multiple threads will be created to crawl different

hyperlinks simultaneously.

∗ Relative URLs (like /admin or #footer) are converted

into Absolute URL (like https://example.com/admin or

https://example.com#footer)

∗ URLs which are not in the scope of target application are

removed from the list (for example twitter.com or

instagram.com)

∗ Hyperlinks with ‘mailto:’ or ‘javascript:’ and those

pointing to static file types like images, pdfs, fonts, etc. are

also removed.

• WebScanner:

– Search for form elements in crawled URLs. From the

listed form elements, find out input fields.

– Pass the appropriate payloads to the input field and

save the response received from the server.

• SQL Injection:

– For an Error-Based SQL Injection attack, we try to

break the syntax of the SQL query being used by the

server by passing SQL-special characters (E.g.’,”,

etc.) through user input.

– For Union SQL injections, a dataset consisting of

SQL queries of specific types will be created.

– In the user input, these payloads will be passed to the

server to check if SQL query is well formed after

inserting the given payload.

– The system requires the target URL to be entered by

the user.

– If the response from the server for the payload is

similar to the usual response, then we can infer that

SQL injection is possible.

• Cross Site Scripting:

– For Cross Site Scripting, a dataset will be created

consisting of different XSS payloads.

– These payloads will then be tested against all input

fields present on that web page.

– The responses are checked for the presence of a

particular payload and to check if XSS is successful.

– If successful, that part of the web page is considered

vulnerable and a report will be generated giving a

detailed knowledge about the vulnerability detected.

V. OTHER SPECIFICATIONS

A. Advantages

• Supports automated and reliable crawling.

• Optimized use of the number of threads to control the

load on the target application.

• Detailed vulnerability analysis.

• User-friendly GUI.

B. Limitations

• Model can currently handle non-CAPTCHA

registrations and logins.

• Possible to detect first-order SQL Injection and XSS

vulnerabilities through the way of automated scanning.

• Current focus is on small to medium-sized web

applications.

C. Applications

• Identifying and reporting vulnerabilities present in a

web application.

VI. CONCLUSION AND FUTURE SCOPE

We have tried to find some of the common vulnerabilities

on the web, such as SQL Injection and Cross Site

Scripting. We have proposed an algorithm and further

enhancements in the system to improve the efficiency of

the vulnerability detection in the web application. We

proposed a system that will crawl the entire web

application, scan different types of vulnerabilities, and

generate a report specifying an overview of the detected

vulnerabilities.

There is a scope of improvement in various aspects of the

developed system. We can incorporate more

vulnerabilities to further increase the scope of scanning.

The time required for both crawling and scanning can be

improved so that more complex applications can also be

tested for vulnerabilities. Furthermore, options for the

users to access their past scans and their results could be

 46

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 8, Issue 8, August 2021

provided.

Acknowledgment

We take this to express our deep sense of gratitude towards

our esteemed guide Prof. Dr. H. K. Khanuja for giving us

this splendid opportunity to select and present this

preliminary report for the final year project and also

providing facilities for successful completion. We thank

Dr. H. K. Khanuja, Head, Department of Computer

Engineering, for opening the doors of the department

towards the realization of the final year project, all the

staff members, for their indispensable support, priceless

suggestion, and for most valuable time lent as and when

required. With respect and gratitude, we would like to

thank all the people, who have helped us directly or

indirectly.

REFERENCES

[1] Stefano Calzavara, Mauro Conti, Riccardo Focardi,

Alvise Rabitti, and Gabriele Tolomei. Machine

learning for web vulnerability detection: The case of

cross-site request forgery. IEEE Security & Privacy,

18(3):8–16, 2020.

[2] Hoang Viet Long, Tong Anh Tuan, David Taniar,

Nguyen Van Can, Hoang Minh Hue, and Nguyen Thi

Kim Son. An efficient algorithm and tool for

detecting dangerous website vulnerabilities.

International Journal of Web and Grid Services,

16(1):81–104, 2020.

[3] S. K. Mahmoud, M. Alfonse, M. I. Roushdy, and A.

M. Salem. A comparative analysis of cross site

scripting (xss) detecting and defensive techniques. In

2017 Eighth International Conference on Intelligent

Computing and Information Systems (ICICIS), pages

36–42, 2017.

[4] C. Sharma and S. C. Jain. Analysis and classification

of sql injection vulnerabilities and attacks on web

applications. In 2014 International Conference on

Advances in Engineering Technology Research

(ICAETR - 2014), pages 1–6, 2014.

[5] Dimitris E Simos, Jovan Zivanovic, and Manuel

Leithner. Automated combinatorial testing for

detecting sql vulnerabilities in web applications. In

2019 IEEE/ACM 14th International Workshop on

Automation of Software Test (AST), pages 55–61.

IEEE, 2019.

[6] Anastasios Stasinopoulos, Christoforos Ntantogian,

and Christos Xenakis. Commix: automating

evaluation and exploitation of command injection

vulnerabilities in web applications. International

Journal of Information Security, 18(1):49–72, 2019.

[7] TIAN Xiaopeng and TANG Di. A distributed

vulnerability scanning on machine learning. In 2019

6th International Conference on Information Science

and Control Engineering (ICISCE), pages 32–35.

IEEE, 2019.

[8] Xun Zhang, Jinxiong Zhao, Fan Yang, Qin Zhang,

Zhiru Li, Bo Gong, Yong Zhi, and Xuejun Zhang. An

automated composite scanning tool with multiple

vulnerabilities. In 2019 IEEE 3rd Advanced

Information Management, Communicates, Electronic

and Automation Control Conference (IMCEC), pages

1060–1064. IEEE, 2019.

 47

