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Abstract— The detection of defects in semiconductor wafers is of paramount importance in guaranteeing the quality and 

dependability of silicon wafers. However, AI based detection of defects in wafers is challenging due to imbalanced datasets, where the 

number of defective samples is considerably lower than non-defective wafer bin maps. The study introduces SM-CapsNet, an approach 

that tackles the issue of class imbalance by utilizing SMOTE (Synthetic Minority Over-sampling Technique) alongside a modified 

capsule network. This combination enhances the classification model's ability to localize defects effectively. The methodology is 

evaluated on the widely used WM-811K dataset, which contains bin-map images of semiconductor wafers captured under various 

conditions. The experiments show that the proposed method outperformed standard neural networks based on accuracy and F1-score 

metrics. It is also noted that using SMOTE for data generation requires less time and resources compared to traditional data 

augmentation techniques like GANs and CAEs. Thus, SM-CapsNet depicts potential for accurate semiconductor wafer defect detection 

to improve silicon wafer production yields in the in the semiconductor industry. 

 

Index Terms— Semiconductor Wafer Defect Detection, SMOTE, Class Imbalance, Capsule Networks, WM-811K Semiconductor 

Wafers, AI Applications in Industry, Artificial Intelligence, Deep Learning. 

 

I. INTRODUCTION 

Semiconductor wafers are foundational components in the 

production of integrated circuits (ICs) and microelectronic 

devices. They serve as the substrate on which intricate 

circuitry and electronic components are built. The wafer 

fabrication process is complex, involving multiple stages 

which are performed in controlled environments of 

semiconductor labs [1]. However, despite stringent quality 

control measures, defects can occur due to a variety of factors 

throughout the fabrication process including Inadequate 

cleaning and polishing procedures, improper deposition, 

misalignment during photoresist exposure and others. 

Defects can also be introduced through equipment 

malfunctions, contamination, process variations, or human 

errors [2]. As such, accurate detection of these defects in the 

wafer maps at the time of testing becomes of a vital 

importance. Wafer defects exhibit distinct patterns, which 

experts analyze through wafer bin maps for detection and 

categorization. However, this manual inspection process is 

time-consuming and lacks precision, impacting efficiency. 

As the demand for semiconductors continues to surge, the 

importance of automatic wafer defect detection grows. While 

various machine learning techniques have been proposed to 

accurately detect defects, their practical implementation 

faces limitations due to the scarcity of labeled and clean data. 

Consequently, research in semiconductor wafer defect 

detection aims to address the gaps in existing methodologies 

and develop production-ready solutions for efficient wafer 

testing, ensuring improved detection efficiency while 

maintaining quality standards. 

II. LITERATURE REVIEW 

The detection and classification of defects in 

semiconductor wafer maps (WMs) is a critical task in the 

semiconductor wafer fabrication and manufacturing industry. 

Manual classification of defects is challenging and 

time-consuming, making the automation of this process 

desirable. In recent years, deep learning models have shown 

great potential for automating defect classification in WMs. 

Several research papers propose innovative methods and 

techniques to address this problem. Here is a concise 

literature review summarizing the key findings and 

approaches discussed in these papers: 

Tello [3] proposed a dual-stage transfer learning 

mechanism for defect classification in WMs. Their approach 

utilized a pretrained model for feature extraction, followed by 

training smaller models on these features. The study 

demonstrated the effectiveness of transfer learning in 

reducing overfitting and producing a generalized model. 

In [4], a novel scheme employing a Convolutional 

Autoencoder (CAE) with skip connections was introduced 

for WM classification. The method utilized the CAE to 

generate a concise representation of the input WMs, which 

was then used for defect categorization using a classifier. The 

inclusion of skip connections helped preserve minute details 
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during the encoding and decoding processes. 

[5] presented a novel approach using dual-channel CNNs 

for WM defect classification. The dual-channel CNN 

architecture consisted of two CNNs operating on separate 

channels, one containing original wafer map data and the 

other incorporating the concept of a difference map that 

pinpoints the location of defects. The two CNNs were trained 

in competition, and the final classification result was a 

combination of their outputs. 

A lightweight model for structural wafer map defect 

detection was introduced in [6]. The proposed model utilized 

Conv-2D and FC layers to prioritize computational efficiency 

with fewer learning parameters. The study demonstrated the 

efficacy of the lightweight model in production environments 

for semiconductor defect detection. 

[7] addressed the classification and detection of mixed 

defect patterns in a single wafer map using data augmentation 

techniques and mask Recurrent Convolution Network-based 

instance segmentation. The approach employed classical 

augmentation techniques and masking for accurate defect 

identification and classification. The study showcased the 

superiority of this method over traditional classification 

methods in terms of accuracy on large wafer map datasets. 

A novel method using Single Shot Detector (SSD) was 

proposed in [8] for detecting mixed wafer defect patterns in a 

single wafer map. The method involved preprocessing the 

wafer maps to improve the detection of defect patterns in a 

single shot. The experiments demonstrated that the proposed 

method outperformed existing methods in terms of detection 

accuracy and computational efficiency. 

Semi-supervised VAE and Ladder network approaches 

were compared in [9] for categorizing defects in wafer bin 

maps. Active learning and pseudo labelling techniques were 

employed to expedite the learning process and improve 

classification performance. 

[10] presented a methodology involving training a 

prediction model using labeled samples and eliminating 

uncertain samples during the process. Unlabeled data was 

then classified using the prediction model, and an 

unsupervised learning system was used to extract additional 

fault patterns. The study successfully recognized 14 defect 

types and defined five new defect pattern types. 

In [11], a hybrid approach combining deep learning and 

machine learning techniques was proposed for detecting both 

known and unknown defects in wafer maps. The approach 

utilized a CNN for feature extraction and a support vector 

machine (SVM) for defect identification and classification, 

achieving higher accuracy in defect detection. 

A semi-supervised method incorporating label smoothing 

and CNN ensemble was suggested in [12]. The approach 

aimed to address CNN models' overfitting and promote more 

balanced predictions for training data. 

[13] explored state-of-the-art transfer learning methods for 

the classification of wafer map defects. The authors 

conducted a comparative analysis of pretrained light deep 

learning models and investigated different fine-tuning 

strategies. The study demonstrated high accuracy in defect 

classification.  

However, it is evident from the existing research that class 

imbalance of wafer defects occurs predominantly in public 

semiconductor wafer defect datasets along with several 

classification issues pertaining to neural network 

classification models [14]. 

III. PROPOSED METHODOLOGY 

The proposed methodology SM-CapsNet is a combination 

SMOTE for handling class imbalance and a modified 

Capsule Network architecture to address translational 

invariance. The study aims to tackle the major research gaps 

from the existing literature survey given in section II of the 

paper to provide a comprehensive solution for the accurate 

classification of defects in semiconductor wafer maps.  

A. Dataset 

The research utilizes the widely recognized Wafer Map 

WM-811K dataset [15] as a benchmark for semiconductor 

wafer defect detection. The dataset includes 811 unique die 

wafer maps, representing wafers with grids of chips. The size 

of the maps varies, ranging from several hundred to several 

thousand chips. The dataset, previously analyzed in [16] and 

[17], encompasses nine categories, including eight defect 

types and one non-defect category. The defect categories 

consist of Center, Donut, Edge-Loc, Edge-Ring, Loc, 

Random, Scratch, and Near Full, each representing specific 

defect patterns on the wafer map. The ninth category, None, 

represents wafer maps without any defects. Fig. 1 depicts all 

nine wafer map defects denoted in WM-811K dataset.  

The WM-811K dataset includes labels indicating the 

defect categories present on each chip or die in the wafer 

map. The dataset includes wafer binary map samples from 

fabrications, with 3.1% of the wafers (25,519 wafers) 

exhibiting real defects, 18.2% being wafers with no defects 

(147,431 wafers), and the remaining 78.7% (638,570 wafers) 

being unlabeled. The labels provide information about the 

type and location of defects. Among the labeled 21.3% data, a 

total of eight defects and one non-defect type wafer exists. 

Table I represents the percentage of samples present in each 

class in WM-811K dataset.  

Table I .WM-811K: Labeled Data Distribution 

Label Original Data Count Data % 

None 

Edge-Ring 

Edge-Loc 

Center 

Loc 

Scratch 

𝟏𝟒𝟕, 𝟒𝟑𝟏 

9680 

5189 

4294 

3593 

1193 

𝟖𝟓. 𝟐% 

𝟓. 𝟔% 

𝟑. 𝟎% 

𝟐. 𝟓% 

𝟐. 𝟏% 

𝟎. 𝟕% 
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Label Original Data Count Data % 

Random 

Donut 

Near Full 

866 

555 

149 

𝟎. 𝟓% 

𝟎. 𝟑% 

𝟎. 𝟏% 

To tackle the imbalance in minority and majority classes, 

this study proposes the use of Synthetic Minority 

Over-sampling Technique (SMOTE) for data augmentation.  

B. Synthetic Minority Over-sampling Technique 

(SMOTE) 

SMOTE (Synthetic Minority Over-sampling Technique) is 

a widely used data augmentation method designed to address 

class imbalance in datasets. Its purpose is to create synthetic 

samples for the minority class, thereby improving the balance 

between different classes [18]. The SMOTE algorithm 

operates by interpolating new instances between existing 

samples of the minority class. To generate synthetic samples, 

SMOTE selects a minority class instance and identifies its k 

nearest neighbors using a distance metric. The algorithm is 

defined as follows-  

1. Select a minority class instance from the dataset in 

question. Let's denote the selected minority class 

instance as 𝑥𝑖 , where 𝑖  represents the index of the 

instance in the dataset. 

2. Determine the 𝑘  nearest neighbors of the selected 

instance. Using a distance metric, such as Euclidean 

distance, the distances between 𝑥𝑖  and all other 

instances in the dataset are calculated. The 𝑘 nearest 

neighbors are the instances with the smallest distances 

to 𝑥𝑖 . Denote the set of 𝑘  nearest neighbors as 

𝑁𝑁(𝑥𝑖). 

3. Randomly choose one of the nearest neighbors. From 

the set of 𝑘 nearest neighbors, we randomly select one 

instance. Let's denote the randomly selected neighbor 

as 𝑥𝑛 , where 𝑛 represents the index of the neighbor 

instance. 

4. Generate a synthetic sample by interpolating between 

the selected instance and the chosen neighbor. To 

create a synthetic sample, the difference vector (𝑑) 

between 𝑥𝑖 and 𝑥𝑛, denoted as  

𝑑 =  𝑥𝑛 − 𝑥𝑖   

Then, a random number between 0 and 1, denoted as λ is 

chosen. The synthetic sample, denoted as 𝑥𝑛𝑒𝑤 , is generated 

as follows: 

𝑥𝑛𝑒𝑤 =  𝑥𝑖 +  𝜆 × 𝑑 

Here, λ controls the position of the synthetic sample 

between 𝑥𝑖  and 𝑥𝑛 . By varying λ from 0 to 1, we obtain 

different synthetic samples along the line segment connecting 

the original instance and the neighbor instance [19]  

5. Repeat steps 1-4 until the required balance among 

classes is achieved. Steps 1-5 are repeated until 

minority class is sufficiently represented in the 

dataset, achieving the necessary class balance. 

Parameter 𝑘 , representing the number of nearest 

neighbors, is typically chosen based on the characteristics of 

the dataset and with respect to large modulations, a larger 

value of k provides generalized samples. Different choices of 

𝑘 impact the density of synthetic samples and the degree of 

oversampling [19]. 

To ensure that the generated samples are comparable 

enough to be used in the augmented dataset, similarity 

between the generated samples and the synthetic samples is 

calculated using PSNR ratio and cosine similarity. By 

applying SMOTE, the researchers intend to provide a more 

balanced representation of the different defect classes, 

thereby improving the performance of the classification 

model. 

C. Proposed Capsule Network 

The introduction of Convolutional Neural Networks 

(CNNs) revolutionized computer vision by enabling the 

extraction of important visual features and accurate image 

classification. However, CNNs have limitations, including 

the loss of positional information and the misclassification of 

samples [20]. To address these challenges, this research 

proposes the use of Capsule Networks, a novel deep learning 

architecture inspired by the human brain's hierarchical 

connections. Capsule Networks mimic how the brain learns 

and interprets visual information by capturing orientation, 

size, and presence through capsules instead of neurons [21]. 

This approach preserves hierarchical relationships between 

objects and parts, leading to improved image classification 

and segmentation performance. By leveraging the benefits of 

Capsule Networks, this research aims to overcome the 

limitations of CNNs in spatially invariant image 

classification, specifically in wafer-map defect classification. 

Table II describes the proposed architecture of Capsule 

Network that consists of initial Convolution 2D layers to 

narrow down the feature space of wafer maps, followed by 

primary capsule layers and digit capsule layers to obtain 

routing by agreement in the consecutive feature layers.  

Capsule networks calculate the classification loss in a 

different way then conventional CNNs. Margin loss is 

employed for accurate image classification by comparing the 

predicted probabilities of correct and incorrect classes. It is 

calculated by summing the squared differences between the 

predicted probability and a margin hyperparameter for both 

correct and incorrect classes. The margin loss equation is as 

follows: 

𝐿𝑚𝑎𝑟𝑔𝑖𝑛 =  ∑[𝑡𝑖 × max(0, 𝑚+ − 𝑎𝑗)
2

+  𝜆(1 − 𝑡𝑖)

× max(0, 𝑎𝑗 −  𝑚−)
2

] 

where 𝑡𝑖  is the target label activation and 𝑎𝑗  is the 𝑗𝑡ℎ 

capsule activation for 𝑖𝑡ℎ class, 𝑚+ is the margin for positive 
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class, 𝑚− is the margin for negative class and λ is the 

regularization parameter [30]. Reconstruction loss is utilized 

as a training mechanism to ensure effective encoding of input 

image features. It measures the squared differences between 

the input image and the image generated by the capsule 

network. It is basically calculated as the L2 norm. The overall 

loss, denoted as L, is a combination of both the margin loss 

and the reconstruction loss, weighted by a factor α: 

𝐿 =  𝐿𝑚𝑎𝑟𝑔𝑖𝑛 +  𝛼(𝐿𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) 

 The weighting factor α balances the contribution of each 

loss term, allowing for effective optimization of the capsule 

network during training.  

Thus, using a combination of the above losses capsule 

network overcomes the loss of positional information in 

CNNs, preserves hierarchical relationships, and provides 

improved handling of spatial invariance. 

Table II . Proposed Capsule Network Architecture 

 

IV. EXPERIMENTAL SETUP 

In this section, the experiments conducted to evaluate the 

effectiveness of proposed model against the state-of-the-art 

classification models using two subsets of WM-811K 

dataset- one with SMOTE generated data and the other 

baseline data with classical augmentation techniques are 

described. 

Multiclass SMOTE (Synthetic Minority Over-Sampling 

Technique) is used to produce random samples of the 

minority value classes based on selection k-nearest numbers 

as described in section III-(B). Table III depicts the 

parameters used to generate SMOTE samples for minority 

classes.  

Table III. Configuration for SMOTE Sample Generation 

Parameters  Value  

k (k-nearest neighbor)  

Random Sampling State  

m (m-neighbor) 

No of parallel jobs 

5 

45 

3 

5 

A sampling strategy of ratio of samples required to be 

generated and the actual samples in majority class is used 

here to generate 5000 samples for each of the minority class.  

Experiments are conducted to perform a comparative 

analysis of semiconductor wafer defect dataset using three 

different classification networks namely- MobileNetV2, 

ImageNet, and proposed Capsule Network (SM-CapsNet). 

The dataset consists of 5000 colored wafer bin maps from 

each of the 8 defect classes and one non-defect class with an 

image size of 256 x 256 pixels. The training parameters 

described in Table IV are kept constant for the experiments 

while the network model for evaluation changes in each set. 

The training is conducted on a dual Nvidia A100 GPU. 

Table IV. Training Configuration for Classification 

Networks 

Parameters  Value 

Epochs 

Learning Rate 

Batch Size 

Optimizer 

Input Image Size 

30 

0.01 

32 

SGD 

3 x 256 x 256  

V. RESULTS AND ANALYSIS 

Synthetic Minority Over-sampling Technique (SMOTE) is 

used to generate samples for the minority classes in the 

dataset including Center, Donut, Loc, Random, Scratch, Near 

full. Similarity of the generated samples is calculated using 

PSNR ratio and cosine similarity as described in Section III B 

of the paper. PSNR ratio greater 30dB and a cosine similarity 

value closer to 1 depict higher similarity among the samples 

and original dataset. Table 3 represents the average PSNR 

ratio and cosine similarity for a random of 100 generated 

samples with actual samples of each minority class.  

Table V. Average PSNR and Average Cosine Similarity 

Comparison of Generated and Original Samples 

Minority Label PSNR Ratio (dB) Cosine Similarity 

Center 

Donut 

Random 

Loc 

Scratch 

NearFull 

32.12 

31.45 

32.04 

30.85 

31.78 

31.21 

0.894 

0.940 

0.950 

0.929 

0.937 

0.887 

Further, a comparison is drawn between the conventional 

image generation techniques – GANs and CAEs, and 

SMOTE. Resource utilization and training duration for 

GANs [22] and CAEs [4] is compared with SMOTE. It is 

noted that since SMOTE does not involve learning via 

training, it results in optimization of resources utilized. Table 

II gives the gist of the above optimization flow.  
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Upon the successful generation of SMOTE samples, we 

use the augmented balanced subset of WM-811K dataset for 

classification of defects in semiconductor wafers. This study 

aims at providing a comparative analysis of state-of-the-art 

classification methods including MobileNetV2 [23], 

ImageNet [24] and the proposed Capsule Network for 

classification on balanced subset of WM-811K dataset and an 

unbalanced subset of the dataset where the minority classes 

are not augmented.  

Table VI. Resource Comparison between SMOTE, and 

GANs and CAEs 

 

Figure 2-(a) and 2-(b) depict the variation of accuracy in 

percentage when MobileNetV2 is used for classification on 

Wafer-Map data without SMOTE generated samples and 

with SMOTE augmentation respectively.  

 
Fig. 2 Variation of Accuracy for MobileNetV2 

(a)  On Baseline WM-811K Dataset without SMOTE 

 
Fig. 2 Variation of Accuracy for MobileNetV2  

(b)  On WM-811K Dataset with SMOTE 

Figure 3-(a) and 3-(b) depict the variation of accuracy in 

percentage when ImageNet is used for classification on 

Wafer-Map data without SMOTE generated samples and 

with SMOTE augmentation respectively. 

 
Fig. 3 Variation of Accuracy for ImageNet  

(a)  On Baseline WM-811K Dataset without SMOTE 

 
Fig. 3 Variation of Accuracy for ImageNet  

(b) On WM-811K Dataset with SMOTE 

Figure 4-(a) and 4-(b) depict the variation of accuracy in 

percentage when proposed Capsule Network is used for 

classification on Wafer-Map data without SMOTE generated 

samples and with SMOTE augmentation respectively. As is 

depicted by the results, SMOTE balanced data performs 

better classification of semiconductor defects when trained 

on each of the MobileNetV2, ImageNet and CapsNet than its 

counter data that is not balanced using synthetic minority 

oversampling. 

 
Fig. 4 Variation of Accuracy for Proposed Capsule Network  

(a)  On Baseline WM-811K Dataset without SMOTE 
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Fig. 4 Variation of Accuracy for Proposed Capsule Network  

(b)  On WM-811K Dataset with SMOTE 

Based on the experimental setup, Table IV showcases the 

maximum accuracies for baseline and improved 

methodology using SMOTE, the training and validation 

losses for each case and the F1 Score for minority classes. It 

is noted that proposed SM-CapsNet when clubbed with 

SMOTE beats the extensive state of the art ImageNet model 

for semiconductor wafer defect detection problem by a small 

margin of 0.25%. However, a jump of 0.009 is observed in 

terms of F1 scores of minority classes which along with 

resource optimization depicted in Table III make 

SM-CapsNet a suitable method for wafer defect detection in 

semiconductor manufacturing in production.  

For the baseline dataset, classical augmentation techniques 

are used in order to generate a dataset with equal samples for 

all classes. However, due to the presence of limited samples 

for minority defects classical augmentation techniques 

perform substandard as compared to SMOTE where the 

minority class is scaled to the majority class using better 

sample generation.  

Table VII. Comparative Analysis of SMOTE and Baseline Methods 

Model SMOTE 
Training 

Accuracy 

Validation 

Accuracy 
F1 Score Training Loss Validation Loss 

MobileNetV2 
No 93.57% 92.91% 0.876 0.904 0.756 

Yes 95.38% 93.59% 0.899 0.456 0.254 

Image Net 
No 96.78% 94.95% 0.9 0.956 0.662 

Yes 98.03% 97.59% 0.917 0.404 0.456 

Proposed Capsule 

Network 

No 97.01% 95.76% 0.921 0.678 0.704 

Yes 98.99% 97.84% 0.926 0.046 0.045 
 

 
Fig 5. Comparative Analysis of Model Accuracies with 

SMOTE/CAT data 

Fig. 5 represents a comparative analysis of accuracies on 

classical augmentation of data using rotation, flipping and 

other image transformations, and accuracies of various 

classification methods on data generated with the help of 

SMOTE. 

VI. CONCLUSION 

The proposed solution uses a combination of SMOTE for 

generation of balanced labeled dataset. Further, the proposed 

study uses capsule networks for dynamic routing and defect 

detection as the base classification network Further a 

comparative analysis with various state of the art deep neural 

networks is performed that reveals that our presented method, 

SM-CapsNet with SMOTE and Capsule Network as the 

classification model closely outperforms traditional transfer 

learning mechanisms on WM-811K balanced dataset. The 

analysis of resources and training time required on each 

resource for SMOTE generation shows that SMOTE can be a 

light-weight solution for data augmentation in comparison 

with GANs and other classical data augmentation techniques. 

In future, a semi-supervised approach can be used to 

leverage the entire available wafer bin map samples rather 

than just the labeled subset of WM-811K data.  
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