.;3;‘,‘ lFERP International Journal of Engineering Research in Electronics and Communication
B P T Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

GPU Accelerated Image
Processing using Bilateral Filter

Msonal D. Nikhade, ?Mayuri L. Kale,'Krutika Y. Bhagwatkar, "’ Anjali B. walke,®'Dhiraj K. Thote
2B sty dent, Department of Electronics and Telecommunication, YCCE, Nagpur, India
B Assistant Professor, Department of Electronlcs and Telecommunication, YCCE, Nagpur, India
sonal.nikhadel0@gmail. com[]mayurlkale23@gmall com,Plkriti. bhagwatkar@gmail. com, anjaliwalkell@gmail.com
Elghira.net@rediffmail.com

[1]

Abstract: The future of computation is the GPU, i.e. Graphical Processing Unit. They are developiiiilililie. oreat parallel
computing units with the promise that the graphics cards have shown in the field of image processi
capability that these GPUs possess. Compute Unified Device Architecture i.e. CUDA is NVIDIA’s pa
It enables dramatic increase in computlng performance, by completely harnessing the power of the GH
MATLAB code for image processing using bilateral filter, and then we interface GPU '
related code of image processing for GPU for this filter. By changing the values of dis ages, we have
obtained variations in the output images and their corresponding computational tjg L Further these

computational times are compared and it is observed that the time taken by . 80% lesS kthat of CPU.

Keywords: Image processing, bilateral filter, GPU, CUDA

I INTRODUCTION
Image Processing:

as shift invariance,
Image processing is any form of sig or” digital, discrete-time
an image, such as a photograph or i€, passive or active, infinite
input and after processinggfe output ma impulse resp% oF finite impulse response (FIR) type

or a set of characteristics oilrameters re i f discrete-ti igital filter. Since we are using only
Mostly, thel Nage? ing'te [i bilateral filter®for processing, therefore we are going to
i ARENVO € i d disc Bout bilateral filter which was introduced by
et al in 1998. It is a non-linear filter. It is used to
®preserve edges of an image and to reduce noise for
smoothing the images as shown in figure 1 and 2.

Image proges
various § ;
corrupted by ran
may have poor :
directly for particular software s. So the filtering of
the images is required. Bagi ® filtering transforms pixel
intensity values to reveal in image characteristics such
as

—Enhancement: improves contrast Fig.1: Input image (left) and output image (right) of bilateral
—Smoothing: remove noises filter

—Template matching: detects known patterns

33

mailto:dhira.net@rediffmail.com

#+IFERP

m.-dq s derieplag (s id

Fig.2: The Bilateral Filter 8-Bit Source Image (left), Linear-
Intensity Bilateral (middle), Logarithmic-Intensity Bilateral

(right)

In bilateral filter, at a given location the value of the fj

ccelerated

by exploiting pa s Parallel
ds for graphical

processing architecture 1S"GPU whi

processing unit also referred ,@a processing unit. It is
basically a specialized @ nic circuit which rapidly
manipulates and alters mory to accelerate the image
processing. GPU is used to calculate 3D functions as this
type of calculations are very heavy on CPU to compute, thus
increasing computational speed.

GPU are primarily designed for graphical purposes but
now it is evolved into computing, precision and performance
which lead into emergence of so called GPGPU. It stands for
general purpose GPU and is fundamentally a software
concept. CUDA architecture is used to achieve GPGPU with
GPU architecture. Architecturally GPU consist of hundreds
of cores that can handle thousands of software threads
simultaneously while CPU composed of few threads with
lots of cache and handle process sequentially. GPU supports
data parallelism; in contrast of CPU that supports task
parallelism. Also GPU has higher computational and
memory bandwidth capabilities than CPU. GPUs are not
used alone but are used along with CPU.

International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 1, Issue 4, Mar 2015

ial par ication is run
part accelerated by
performance, price

i ¢a\tprogramming interface of NVIDIA’s GPU
C e which is featured in the GPU cards, for general
pose computing. This architecture is a set of library

“functions that can be coded as extension of C/C++

o

programming languages. CUDA provides great parallel
computational power to the programmer which is provided
by NVIDIA’s graphics cards. An executable code is
generated by compiler for CUDA device which is seen by
CPU as a multi-core co-processor. GPGPU does not imply
any memory restrictions on CUDA device. All the memory
which is available on the device can be accessed without any
restriction by CUDA. For different types of memories, there
is variation in access time. This gives advantage to
programmers to fully use the parallel computing power of
the processor for general purpose computation. CUDA
which is well suited for highly parallel algorithms, provide
128 cores which can communicate and exchange
information with each other. To optimize the performance of
algorithm to run on GPU, large numbers of threads are
required. CUDA have thousands of threads executing in
parallel which are going to execute the same code or
function which is called as kernel. Each thread has its own
ID, and based on its ID, it will determine to work on which
pieces of data. A collection of threads is called a block
which runs on a multiprocessor at a given time with multiple
blocks assigned to a single multiprocessor and time-shared
execution. A number of blocks are generated on a device
with a single execution. A collection of all the blocks in a

34

.;3:?‘ IFERP International Journal of Engineering Research in Electronics and Communication
ef Sl Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

raaneriag ¢ nghmers . deoviuglag rreesich

single execution of code is called a grid. Like threads, each
block is given a unique ID that can be accessed within the
thread during its execution. Resources are divided equally
amongst all the threads of all blocks executing on a single
multiprocessor.

i SHDOMstoresse 36| | CPUJ Mgt
.
SN0 NAprovse?
SMD Welipmcessr | m‘i_
Shavad Mervaey
'y
<] D F. ~
! ""W‘_
| | e
K]
I ["“"“‘I 3 wz TG 050U
2 2
l s Momery I
IWPUT INAGE
Fig 4 A ag€ " Interface and Pro ming f
Model ‘ " W 4::9

S

Fig.6: Block diagram of Proposed Model.

e Consider an input image.

e This image is initially processed by using bilateral
filter.

e This processed image is the first output image.

e The time required for processing the input image
(simulation time) using CPU without GPU is noted
down as t1.

e Now again consider the same input image and
process it by interfacing CPU with GPU.

e The second output image is obtained.

e Note the time required to obtain this output image
(simulation time) as t2.

e Compare and analyze the two timings i.e. time t1
and time t2.

CPU

Fig.Sa: PCl slots of CPU for interfacing with GPU

ii. Flowchart:

35

#+IFERP

vannuieg o ngl et deavieplag (e d

T CRLTULLTE PLTER
RESPONCE UNAG
FIRA((=cuer -

FEAD THE IMAGE AND lewindossl, | 1in: 10

STORE N MATAX A I=dewlodonst)

‘ v
paite CENERATE SMALL POATION
SIGME_da2 OF LA3GE IMGE &'
SIGMA et

APPLY FILTER MASK ‘P O
CVIRT SMALL 20RTOR OF
iMase

v
CENBRATEVRGATIMN
ZPATIAL DONRN USING
(5 1=

PRI Le S S LY 3

= 4%3))2 FLTSRID IMASE IS

aeTaIN=D
v
GIRCIATT W IN
TANGE DOMAK L%ING ' .
T . gl STOE
A L e o AT .
ralgma 11,

H = exp(-(dL.~2+da."2+db.A2)/(2%si g8 "2))
e By using anothe éla, filter response is

calculated as
F = H.*G((iMin:iMax)-i+window+1,(jMin:jMax)-
jtwindow+1)
e The whole image is then divided in small portions
and the filter mask is applied to each small portion.
e The filtered image is thus obtained and its

simulation time is noted.
1. SIMULATED RESULT:

The input image is processed on CPU without GPU and the
output images are obtained as follows:

International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

}Elnp:cd tine iz B,713258 seconds,

LEX
FAe EF Yew Isat Took Ceskh‘{: windw Bp N
Dedae k QaN® € 08 nO
gt DULRLE

[Si=1ES]

Fls Edk ¥Wew lnsat Tods Dedidop Window belp

NEds & KA e DE| =0

il
1o
150

200

250
1000 200 300 100

a0 IO

Fig.7b: 2™ Input and Output Image

The output image of fig. (7b) is smoothened and its edges

get sharpened. Also, the details are enhanced.

36

.;3:?‘ IFERP International Journal of Engineering Research in Electronics and Communication
2 Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

raaneriag ¢ nghmers . deoviuglag rreesich

Elapzed Time iz 29.424160 seconds, Bus support: PCI-E 2.0x16

Figure 1 =X
Fe Edt Wew Dust Tods Desitop Window Hep IMAGE ELASPED TIME
DEEs| h &aNe « 08B v O || RESOLUTION

Input

427 x 285

Fle Edt Vew [ncedt Took Dedtcp Wndaw Heo

D& K AQes ¢« 0B v D

q i

images:
Operating Syste:
Processor: Intel (R
Memory: 254 M

Page file:150 MB used 2090 MB&

(lapead tine 2w 20943671 smconcls

ﬁiagmrvi'j.?smuuwmm B
Table: The elapsed time cessed images on above CPU D&E8 & 4aANs € 08 =0
without GPU for distinct values of sigma_d and sigma_r

(filter parameters):

Sr. IMAGE CPU ELAPSED TIME
No. RESOLUTION Sigma_d=2 | Sigma_d=4
sigma_r=6 sigma_r=6

1. 199 x 230 8.713 sec 8.011 sec
2. 256 x 320 25.759 sec 15.942 sec
3. 339 x 483 29.424 sec 25.462 sec

The image of books(fig. 7d) of resolution 427 x 285 shown
below, run on CPU with the specification descried above
and GPU with following specification and their simulated
times are compared in table:

Product name: Nvidia GT 520

Cuda core: 48 cores each of 1.3GHz

Memory space: 2GB RAM on graphics card

37

.'3'" lFERP International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 1, Issue 4, Mar 2015

CUDA architecture, the simulation speed is boosted which is
about 70 to 80 % of original speed thus reducing the elapsed

Fle Bk Vew buesi feok Desitop Mookw he - time of processing.
Deds h A_QANe « 08 WO
ingut REFERENCES:

e Giuseppe Palma ¢ and Bruno
i Bioimaging,
Pltaly. Salvatore
& and Francesco

hematics and

100 0 30

Fig.8b: Input and Output Image

In the output image of fig (8b), posterisatiiras’o g i i 20L3).
' 3 W J. Dally, Brucek

b Elapsed time 3z 20,996651 secomds. and and David Glasco.
and the future of parallel

Fla Edt Vv Joet Tock Deskbop Wedow Heb

Dedd K R0 ¢ 08 &0

input aupit T)
eésayshree Ghorpade, Jitendra Parande, Madhura
g : Q Kulkarni, Amit Bawaskar. —GPGPU processing in
? |

CUDA architecture.l (2013)

Fernandes Palhano, Xavier de Fontes, Guillermo
Andrade Barroso, Pierre Hellier. INRIA Centre de
Recherche Rennes Bretagne Atlantique. —Real time
¢ ‘ ultrasound image denoisingl. Published in
W X q0 4 Sl e W 30 a0 “Journal of Real-time image processing” (2010).

Bart Goossens, Hiep Luong, Jan Aelterman,
Aleksandra Pizurica, and Wilfried Philips. Ghent

Fig.8c: Input and Output Iﬁage

In the output image of fig (8c), the main retinal blood University, —A GPU accelerated real-time
vessels are highlighted with thorough smoothening and NLMeans algorithm for denoising color video
ramp-edge. sequencesl. TELIN-IPI-IBBT, St.
Pietersnieuwstraat 41, 9000 Ghent, Belgium.(2009)

CONCLUSION: e Ben Wiess, Shell & Slate Software Corp. —Fast

. Median and Bilateral Filteringl. (2008)
Thus, from the results, we can conclude that after applying

bilateral filtering on different images, the output images are

Aaron Lefohn, Joe M. Kniss, Robert Strzodka,

smoothened by noise removal and preserving the edges. Shubhabrata Sengupta, and John D. Owens. - Glift:
Also, for the images of different resolutions and for distinct Generic, efficient, random-access GPU data
filter parameters such as window size, sigma_d, sigma_r, structures.] ACM Transactions on Graphics,
etc, the simulation time changes accordingly. For higher 25(1):60-99, January 2006.

resolution images, the computational speed of CPU is less
and therefore the simulation time required is more. From the
literature survey, we had said that computational time
reduces and thus after interfacing GPU with CPU using

David A. Bader and Kamesh Madduri. —Parallel
algorithms for evaluating centrality indices in real-
world networks.l In ICPP ’06: Proceedings of the

38

;‘;:" IFERP International Journal of Engineering Research in Electronics and Communication
el e Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

vannuieg o ngl et deavieplag (e d

2006 International Conference on Parallel
Processing, pages 539-550, Washington, DC,
USA, 2006. IEEE Computer Society.

John D. Owens, Shubhabrata Sengupta, and Daniel
Horn. —Assessment of Graphic Processing Units
(GPUs) for Department of Defense (DoD) Digital
Signal Processing (DSP) Applications.l Technical
Report ECE-CE-2005-3, Department of Electrical
and Computer Engineering, University of
California, Davis, October 2005.

Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne
Yoakum-Stover. —GPU cluster ~ for high ¥
performance computing.l In SC ’04: Proce
of the 2004 ACM/IEEE conf

Supercomputing, page 47, Washi
2004. IEEE Computer Societ

Wen Wu and Weng Ann

condensed “Iinite 4i@lement
accegiatig

termann.” —Li
implementatio
J®YACM Transacti
:998. 916, 20 @

P. J. yarQge i hortest Path
Problem on Processor i Proceedings of the
Fourth IEEE Sy ‘ on the Frontiers of
Massively Par Computing, pages 553-556,

1992

39

