

[1]

International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

GPU Accelerated Image

Processing using Bilateral Filter

Sonal D. Nikhade,
[2]

Mayuri L. Kale,
[3]

Krutika Y. Bhagwatkar,
[4]

Anjali B. walke,
[5]

Dhiraj K. Thote

[1]

[1][2][3][4] Student, Department of Electronics and Telecommunication, YCCE, Nagpur, India
[5] Assistant Professor, Department of Electronics and Telecommunication, YCCE, Nagpur, India

sonal.nikhade10@gmail.com,
[2]

mayurikale23@gmail.com,
[3]

kriti.bhagwatkar@gmail.com,
[4]

anjaliwalke11@gmail.com
,
[5]

dhira.net@rediffmail.com

Abstract: The future of computation is the GPU, i.e. Graphical Processing Unit. They are developing into great parallel
computing units with the promise that the graphics cards have shown in the field of image processing and the computational
capability that these GPUs possess. Compute Unified Device Architecture i.e. CUDA is NVIDIA’s parallel computing architecture.
It enables dramatic increase in computing performance, by completely harnessing the power of the GPU. Initially we generate a
MATLAB code for image processing using bilateral filter, and then we interface GPU with CPU using CUDA and create the
related code of image processing for GPU for this filter. By changing the values of distinct parameters of the images, we have
obtained variations in the output images and their corresponding computational time on CPU as well as on GPU. Further these
computational times are compared and it is observed that the time taken by the GPU is 70 to 80% less than that of CPU.

Keywords: Image processing, bilateral filter, GPU, CUDA

There are different types of filters available for image
I. INTRODUCTION

Image Processing:
Image processing is any form of signal processing in which

an image, such as a photograph or video frame, is taken as

input and after processing the output may be either an image
or a set of characteristics or parameters related to the image.

Mostly, the image-processing techniques involve treating the
image as a two-dimensional signal and applying standard
signal-processing techniques to it. It is the application of

signal processing techniques to the domain of images —

two-dimensional signals such as photographs or videos.

Image processing typically involves filtering an image using
various types of filters. Sometimes, images are often

corrupted by random variations in illumination, intensity, or
may have poor contrast and can’t be used and processed

directly for particular software or systems. So the filtering of

the images is required. Basically, filtering transforms pixel
intensity values to reveal certain image characteristics such

as

–Enhancement: improves contrast

–Smoothing: remove noises

–Template matching: detects known patterns

processing such as linear filters or non-linear filters, time-
invariant or time-variant, also known as shift invariance,

causal or non-causal, analog or digital, discrete-time

(sampled) or continuous-time, passive or active, infinite
impulse response (IIR) or finite impulse response (FIR) type

of discrete-time or digital filter. Since we are using only

bilateral filter for processing, therefore we are going to
discuss about bilateral filter which was introduced by

Tomasi et al in 1998. It is a non-linear filter. It is used to

preserve edges of an image and to reduce noise for
smoothing the images as shown in figure 1 and 2.

Fig.1: Input image (left) and output image (right) of bilateral

filter

33

mailto:dhira.net@rediffmail.com

International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 1, Issue 4, Mar 2015

Fig.2: The Bilateral Filter 8-Bit Source Image (left), Linear-
Intensity Bilateral (middle), Logarithmic-Intensity Bilateral
(right)

In bilateral filter, at a given location the value of the filtered

image is a function of the input image values in a small

neighborhood of the same location. In particular, Gaussian
low-pass filtering computes a weighted average of pixel

values in the neighborhood, in which, the weights decrease
with distance from the neighborhood center, therefore,

appropriate to average them together. The noise values that

corrupt these nearby pixels are mutually less correlated than
the signal values, so noise is averaged away while signal is

preserved.

1) GPU (Graphical Processing Unit):

The primary goal of our project is to maximize computation

speed of image processing. Performance can be accelerated
by exploiting parallelism. The best example of this Parallel

processing architecture is GPU which stands for graphical

processing unit also referred as visual processing unit. It is
basically a specialized electronic circuit which rapidly
manipulates and alters memory to accelerate the image

processing. GPU is used to calculate 3D functions as this
type of calculations are very heavy on CPU to compute, thus

increasing computational speed.

GPU are primarily designed for graphical purposes but

now it is evolved into computing, precision and performance

which lead into emergence of so called GPGPU. It stands for

general purpose GPU and is fundamentally a software

concept. CUDA architecture is used to achieve GPGPU with
GPU architecture. Architecturally GPU consist of hundreds

of cores that can handle thousands of software threads

simultaneously while CPU composed of few threads with

lots of cache and handle process sequentially. GPU supports

data parallelism; in contrast of CPU that supports task
parallelism. Also GPU has higher computational and

memory bandwidth capabilities than CPU. GPUs are not

used alone but are used along with CPU.

Fig.3: Comparison between CPU and GPU

The applications of GPU are in embedded systems,

mobile phones, personal computers, work stations and play
stations. In GPU accelerated computing, the cluster of GPU

and CPU is used. Here sequential part of application is run
on CPU and computationally intensive part accelerated by

GPU. This delivers best value of system performance, price
and power

2) CUDA (Compute Unified Device Architecture):

CUDA is a programming interface of NVIDIA’s GPU

architecture which is featured in the GPU cards, for general
purpose computing. This architecture is a set of library

functions that can be coded as extension of C/C++

programming languages. CUDA provides great parallel
computational power to the programmer which is provided
by NVIDIA’s graphics cards. An executable code is

generated by compiler for CUDA device which is seen by

CPU as a multi-core co-processor. GPGPU does not imply
any memory restrictions on CUDA device. All the memory

which is available on the device can be accessed without any
restriction by CUDA. For different types of memories, there

is variation in access time. This gives advantage to

programmers to fully use the parallel computing power of

the processor for general purpose computation. CUDA

which is well suited for highly parallel algorithms, provide
128 cores which can communicate and exchange

information with each other. To optimize the performance of

algorithm to run on GPU, large numbers of threads are
required. CUDA have thousands of threads executing in

parallel which are going to execute the same code or

function which is called as kernel. Each thread has its own

ID, and based on its ID, it will determine to work on which

pieces of data. A collection of threads is called a block

which runs on a multiprocessor at a given time with multiple
blocks assigned to a single multiprocessor and time-shared
execution. A number of blocks are generated on a device

with a single execution. A collection of all the blocks in a

34

International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

single execution of code is called a grid. Like threads, each
block is given a unique ID that can be accessed within the

thread during its execution. Resources are divided equally

amongst all the threads of all blocks executing on a single

multiprocessor.

Fig.5b: Graphics card interfaced to PCI slot of motherboard

II. PROPOSED MODEL:

i. Block diagram:

Fig .4: CUDA Hardware Interface and Programming

Model

I. INTERFACING OF GPU WITH CPU

Fig.5a: PCI slots of CPU for interfacing with GPU

Fig.6: Block diagram of Proposed Model.
 Consider an input image.

 This image is initially processed by using bilateral

filter.

 This processed image is the first output image.

 The time required for processing the input image

(simulation time) using CPU without GPU is noted

down as t1.

 Now again consider the same input image and

process it by interfacing CPU with GPU.

 The second output image is obtained.

 Note the time required to obtain this output image

(simulation time) as t2.

 Compare and analyze the two timings i.e. time t1

and time t2.

ii. Flowchart:

35

International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

Fig.8: Flowchart of Bilateral Filter for MATLAB

 Initially the input image which is in matrix form, is

read and stored in variable A.

 Here the window size is taken as 2 and the values

of бd (sigma_d) and бr (sigma_r) are taken as 2 and
6 respectively and these values can be varied.

 Now using the following formulae, weights are

generated in spatial domain as well as in frequency
domain.

G = exp((-1/2)*(X.^2+Y.^2)/(sigma_d^2))

H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2))

 By using another formula, filter response is

calculated as

F = H.*G((iMin:iMax)-i+window+1,(jMin:jMax)-
j+window+1)

 The whole image is then divided in small portions

and the filter mask is applied to each small portion.

 The filtered image is thus obtained and its

simulation time is noted.

III. SIMULATED RESULT:

The input image is processed on CPU without GPU and the

output images are obtained as follows:

Fig.7a: 1
st
 Input and Output Image

As we can see in the output image of fig (7a), the quality of

object is improved and background is smoothened.

Fig.7b: 2
nd

 Input and Output Image

The output image of fig. (7b) is smoothened and its edges

get sharpened. Also, the details are enhanced.

36

International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

Bus support: PCI-E 2.0×16

Fig.7c: 3
rd

 Input and Output Image

From the top right corner of output image of fig (7c), we can

observe that the background is smoothened and the edges of
object are sharpened.

On CPU, with following specifications, we have run

MATLAB code of bilateral filter and got the following
results which are shown in the tabular form for above
images:

Operating system: Microsoft windows XP professional

Processor: Intel(R), Pentium(R), 4 CPU 1.40GHz

Memory: 254 MB Ram

Page file:150 MB used, 2090 MB available

Table: The elapsed time of processed images on above CPU

without GPU for distinct values of sigma_d and sigma_r
(filter parameters):

Fig.7d: Input and output image of books

Medical Application:

Image processing and computer vision techniques are

increasing in importance in all fields of medical science, and
are especially applicable to modern ophthalmology.

The image of books(fig. 7d) of resolution 427 x 285 shown
below, run on CPU with the specification descried above

and GPU with following specification and their simulated

times are compared in table:

Product name: Nvidia GT 520

Cuda core: 48 cores each of 1.3GHz
Memory space: 2GB RAM on graphics card

Fig.8a: Input and Output Image

In the output image of fig (8a), the edges of retinal blood

vessels are sharpened and the corrupted pixels get improved

by removal of noise.

37

Sr.
No.

IMAGE
RESOLUTION

CPU ELAPSED TIME

Sigma_d=2
sigma_r=6

Sigma_d=4
sigma_r=6

1. 199 x 230 8.713 sec 8.011 sec

2. 256 x 320 25.759 sec 15.942 sec

3. 339 x 483 29.424 sec 25.462 sec

IMAGE
RESOLUTION

ELASPED TIME

427 x 285 ON CPU ON GPU

28.861 sec 3.05sec

International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 1, Issue 4, Mar 2015

CUDA architecture, the simulation speed is boosted which is
about 70 to 80 % of original speed thus reducing the elapsed

time of processing.

REFERENCES:

 Giuseppe Palma, Marco Comerci and Bruno

Alfano. Institutute of Biostuctures and Bioimaging,

National Research Council of Italy. Salvatore
Cuomo, Pasquale De Michele and Francesco

Piccialli. Department of mathematics and

applications, University of Naples Federico II,

Italy. Pasquale Borelli, Department of advanced

biomedical sciences, University of Naples Federico

Fig.8b: Input and Output Image

In the output image of fig (8b), posterisation has occurred.

Fig.8c: Input and Output Image

In the output image of fig (8c), the main retinal blood

vessels are highlighted with thorough smoothening and

ramp-edge.

CONCLUSION:

Thus, from the results, we can conclude that after applying

bilateral filtering on different images, the output images are

smoothened by noise removal and preserving the edges.
Also, for the images of different resolutions and for distinct

filter parameters such as window size, sigma_d, sigma_r,

etc, the simulation time changes accordingly. For higher

resolution images, the computational speed of CPU is less
and therefore the simulation time required is more. From the
literature survey, we had said that computational time
reduces and thus after interfacing GPU with CPU using

II, Italy. ―3-D Non-Local Means denoising via

multi-GPU.‖ Published by IEEE (2013).

 Stephen W. Keckler, William J. Dally, Brucek

Khailany, Michael Garland and David Glasco.

NVIDIA. ―GPUs and the future of parallel
computing‖. Published by IEEE computer society

(2013).

 Jayshree Ghorpade, Jitendra Parande, Madhura

Kulkarni, Amit Bawaskar. ―GPGPU processing in

CUDA architecture.‖ (2013)

 Fernandes Palhano, Xavier de Fontes, Guillermo

Andrade Barroso, Pierre Hellier. INRIA Centre de

Recherche Rennes Bretagne Atlantique. ―Real time
ultrasound image denoising‖. Published in

“Journal of Real-time image processing” (2010).

 Bart Goossens, Hiep Luong, Jan Aelterman,

Aleksandra Pizurica, and Wilfried Philips. Ghent

University, ―A GPU accelerated real-time
NLMeans algorithm for denoising color video

sequences‖. TELIN-IPI-IBBT, St.

Pietersnieuwstraat 41, 9000 Ghent, Belgium.(2009)

 Ben Wiess, Shell & Slate Software Corp. ―Fast

Median and Bilateral Filtering‖. (2008)

 Aaron Lefohn, Joe M. Kniss, Robert Strzodka,

Shubhabrata Sengupta, and John D. Owens. ― Glift:

Generic, efficient, random-access GPU data
structures.‖ ACM Transactions on Graphics,

25(1):60–99, January 2006.

 David A. Bader and Kamesh Madduri. ―Parallel

algorithms for evaluating centrality indices in real-

world networks.‖ In ICPP ’06: Proceedings of the

38

International Journal of Engineering Research in Electronics and Communication
Engineering (IJERECE) Vol 2, Issue 3, Mar 2015

2006 International Conference on Parallel
Processing, pages 539–550, Washington, DC,

USA, 2006. IEEE Computer Society.

 John D. Owens, Shubhabrata Sengupta, and Daniel

Horn. ―Assessment of Graphic Processing Units

(GPUs) for Department of Defense (DoD) Digital

Signal Processing (DSP) Applications.‖ Technical
Report ECE-CE-2005-3, Department of Electrical
and Computer Engineering, University of

California, Davis, October 2005.

 Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne

Yoakum-Stover. ―GPU cluster for high

performance computing.‖ In SC ’04: Proceedings

of the 2004 ACM/IEEE conference on
Supercomputing, page 47, Washington, DC, USA,

2004. IEEE Computer Society.

 Wen Wu and Pheng Ann Heng. ―A hybrid

condensed finite element model with GPU
acceleration for interactive 3D soft tissue cutting‖:

Research Articles. Comput. Animat. Virtual Worlds,

15(3-4):219–227, 2004.

 Jens Kruger and Rudiger Westermann. ―Linear

algebra operators for GPU implementation of
numerical algorithms.‖ ACM Transactions on

Graphics (TOG), 22(3):908–916, 2003.

 P. J. Narayanan.‖ Single Source Shortest Path

Problem on Processor Array.‖ In Proceedings of the

Fourth IEEE Symposium on the Frontiers of
Massively Parallel Computing, pages 553–556,

1992

39

