
International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 575

Investigation of Logic Level Techniques to Improve

AES Throughput

[1]

Megha S Hallikeri,
[2]

Raghuram Srinivasan
[1]

 Student,
[2]

 Associate Professor,

Dept. of E&C, M. S. Ramaiah Institute of Technology, Bengaluru
[1]

meghahallikeri0@gmail.com,
[2]

 raghuram@msrit.edu

Abstract— Substitution Box(S-Box) is an important integral part of modern cryptographic cipher techniques like Advanced

Encryption Standard (AES). There exists a bulk literature devoted to the implementation of AES. Combinational logic of

implementation attains high throughput in terms of parameters like speed, area, delay etc. This paper represents the working

principle of AES, Novel algorithmic approaches for S-Box. We mainly concentrated on combinational logic implementation of S-

Box in order to Improve Area. AES is programmed and executed on Xilinx 14.7 version, Spartan 3 Family, ModelSim Simulator.

Cadence 180nm tool is used to verify the parameters. We examine the current work which exploits the mathematical properties of

S-Box. Using this technique throughput is increased by 30%. We verified individual modules separately and waveforms are

obtained.

Index Terms—Advanced Encryption Standard (AES),Substitution Box(S-Box)

I. INTRODUCTION

 Cryptography plays a vital role in the network

security; security issues have become prominent as

technology is developed. The National Institute of Standards

and Technology(NIST) declared Rijndael Block cipher

method as AES algorithm in 2001 [1]. AES performs based

on symmetric key algorithm where in encryption and

decryption both uses same key. The length of block used for

processing is 128 bit, length of key can be varied to multiples

of 32 i.e 128,192 or 256bits. From 128-bit key, algorithm

generates 10 keys of 128-bit each, which are placed into 4X4

arrays. Simultaneously plain text is divided into 4X4 arrays

each are of 128-bits. Each of 126-bit plain text block is

processed in 10 rounds (number of rounds varies with key

size). After 10
th

 round new code is generated. Every

individual byte is substituted in an S-Box and replaced by

reciprocal on Galois Field (GF). AES algorithm undergoes

four transformations namely AddRound key, substitution (S-

Box), Mix columns, Shift rows [2].

S-Box is the main and costliest block in AES,

several different methods for implementation have been

proposed in literature. S-Box is a non-linear substitution step

where in individual byte is replaced with another byte

according to Lookup table [2]. We compared our results with

different algorithms and standard lookup table where lookup

table (LUT) results with 736 cell numbers, area 2772 square

meters. Combinational logic is prominent and emerging

technology where implementation of S-Box is achieved by

operating on Galois Fields (GF), Computation of S-Box

using GF results better than direct implementation or using

LUT.

The sections of this paper are analyzed as follows.

Section II briefs the basic understanding and functionality of

transformations in GF while calculating S-Box, section III

elaborate the proposed architecture of S-Box using

combinational logic, Section IV provides the obtained results

and compares with Base paper.

II. AES WORKING PRINCIPLE

Fig.1 AES basic block diagram

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 576

 Fig.2 AES flowchart

As shown in above figure AES mainly perform on

input which can be text, image or video. And encryption and

decryption are done as shown Fig.1. Detailed procedure of

AES is shown in Fig.2.

a. Add Round Key

Add Round Key is the initial step, where the sub key is

combined and performed with state. Sub key is obtained from

main key using Rijndael‟s key. Size of key and state are kept

same. Su bkey is combined with each byte of state with

corresponding to bitwise Ex-or[1].

b. Shift Rows

This is the module of AES operates on rows. It operates by

shifting each row cyclically, the first row is left unchanged.

For shifting certain rows offset is set. 2
nd

, 3rd rows are

shifted by one left shift, two shifts. Shifting rows remains

same for different block sizes 128 bits, 192 bits and 256 bits.

Row m is shifted left circularly by m-1 bytes[2].

c. Mix Column

Mix Column step is one of the complicated step in

AES, four bytes of each column are combined using linear

transformation. The function takes four bytes as input.

During operation, each column is transformed using matrix.

The matrix retains in all AES operation.

We are mainly dealing with S-Box and detailed explanation

is given in preceding sections.

III. PRELIMINARIES FOR GF TRANSFORMATION

a. Isomorphic Mapping and Inverse Isomorphic Mapping

of GF:

In order to attain transformation of higher order

Galois Fields into lower order, irreducible polynomials are

used as given in equation (1)

GF(2
4
) GF(2

8
) ; I2(X) = x

2
+x+λ;

GF(2
2
) GF(2

4
) ; I1(X) = x

2
+x+φ;

GF(2) GF(2
2
) ; I0(X) = x

2
+x+1;

Where φ={10} λ={1100} (1)

The implementation of S-Box involves 8-bit

multiplicative

Inverse module followed by Affine Transform (AT). The

inverse SubByte can be generated using Inverse AT. Where

both SubByte and Inverse SubByte can be generated

together. The bytes are represented in GF(2
8
) are viewed in

terms of polynomial forms. All the operations in GF(2
8
) are

obtained by taking Modulo-2 operations using corresponding

fixed irreducible polynomial p(x).

p(x) = x
8
 + x

4
 + x

3
+ x + 1 (2)

Inversion in GF(2
8
) has many sublevels. Multiplicative

inverse can be calculated by reducing complex GF(2
8
) into

lower order fields like GF(2
4
) and GF(2

2
). Multiplicative

inverse can be given as in equation (3).

(bx+c)
-1

= b(b
2
B+bcA+c

2
)

-1
x+(c+bA)(b

2
B+bcA+c

2
)

-1
(3)

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 577

Fig.3 Multiplcative Inverse module in GF(2

4
)

The legends of block diagram are as follows

 δ Isomorphic mapping to composite fields

in GF

Squarer Squaring in GF(2
4
)

 Multiplication inversion

d* λ Multiplication with constant λ in GF(2
4
)

Addition operation in GF(2
4
)

Multiplication operation in GF(2
4
)

 δ
-1

 Inverse isomorphic mapping to GF(2
8
)

Multiplicative Inverse (MI) in GF

Calculation for the multiplicative inverse in

composite fields cannot be directly applied to byte which is

based on GF(2
8
). That Byte or element has to be mapped to

its Composite field representation by applying to an

isomorphic function, δ. Followed by performing the MI, the

result of MI also have to be mapped back from its composite

field to its equivalent in GF(2
8
) via the inverse isomorphic

function, δ
-1

. Where δ and δ
-1

 are represented in an 8x8

matrix. Let q be the element in GF(2
8
), then the isomorphic

mapping and its inverse isomorphic mapping can be written

as δ*q and δ-1*q, which is a obtained by matrix

multiplication as shown below, where q7 indicates most

significant bit(MSB) and q0 least significant bit(LSB).

10100000

11011110

10101100

10101110

11000110

10011110

01010010

01000011



 
 
 
 
 
 
 
 
 
 
 
  

1

11100010

11011110

01100010

01110110

00111110

10011110

00110000

01110101

 

 
 
 
 
 
 
 
 
 
 
 
  

 (4)

Affine Transformation

The Multiplicative Inverse output has been

computed, and affine transformation is carried out on the

resulted polynomial[3]. The affine transformation is a simple

matrix multiplication and XOR with a constant column

matrix. Affine transformation over a finite field i.e. GF (2
8
)

can be given as below equation,

7

6

5

4

3

2

1

0

11111000 0

01111100 1

00111110 1

00011111 0

10001111 0

11000111 1

11100011 1

11110001 0

x

x

x

x

x

x

x

x



    
    
    
    
    
      
    
    
    
    
    
        

 (5)

IV. PROPOSED WORK

Squarer

Equations for squaring a element in GF(2
4
) is taken

from [1], where in converting the GF(2
4
) elements into

GF(2
2
) by using irreducible polynomial. Hence the Boolean

expression can be given as equation (6)

3 3

2 3 1

1 2 1

0 3 1 0

;

;

d b

d b b

d b b

d b b b



 

 

  

 (6)

X

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 578

Multiplication with constant (λ)

Modulo reduction can be performed and simplified

by substituting x
2
 = x + φ using the irreducible Polynomial.

The equations for multiplication with constant are derived in

[4]. The polynomial „d‟ is result of squarer of polynomial „b',

is multiplied with the constant λ = {1 1 0 0}. This operation

can be further simplified and 'g' could be achieved as simple

Boolean expressions, given in equation (7).

3 2 0

2 3 2 1 0

1 3

0 2

g d d

g d d d d

g d

g d

 

   





 (7)

Multiplication in GF(2
4
)

Multiplication in GF(2
4
) is the major block in

Combinational logic architecture, which consumes more area

and complicated to analyze. Multiplication of polynomial in

GF is performed as given in fig 4. Which include three major

blocks of multiplication. These multiplication blocks carried

out in GF(2
2
), the equivalent design is given in fig 3.

Equations derived for multiplication block in [1], the

simplified equation for multiplication in GF(2
2
) can be given

as below equation(8)

(1) (1) (0) (0) (1) (1) (1)

(0) (0) (0) (1) (1)

z x y x y x y

z x y x y

  

 
 (8)

Fig.4 Multiplier In Gf(2
4
) Embedded With Multipliers

In Gf(2
2
)

According to literature this block is directly

implemented as shown in Fig.3, and the above equations are

used. Using Ex-or gates leads to increase in area and delay.

To overcome this hurdle we tried to simplify the equation and

proposed a new structural design as shown in Fig.5

Fig.5 Proposed Architecture for GF (2
2
) Multiplier

Where Ex-or gate is replaced by the normal and, or

gates. Which has given overall optimized result. This

proposed Multiplication design of GF(2
2
) is used in Fig.4

The results for each block and module are plotted in next

section.

Multiplicative Inverse:

Multiplicative inverse is sub module of

combinational logic, can be implemented directly using the

standard table as given below. The equations are obtained

from [1]

3

3 2 1 3 2 3 0

2

2 2 1 3 0 3 2 1 3 2 0

1

3 1 2 2 0 3 1 0 3 2 1

0

0 1 2 2 1 3 1 3 0 3 2 0 3 2 1

q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q q q q q









    

    

     

       

(9)

V. RESULTS

We worked on many methods to achieve the

standard table for S-Box, and calculated varies parameters for

each methods. Combinational logic method is the efficient

method which attained less area. We tried to optimize each

sub module of whole architecture shown in fig.1. Could

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 579

achieve efficient result in inverse delta module calculation,

multiplication in GF(2
2
) which in turn enhanced the result of

multiplication in GF(2
4
). The result of multiplicative inverse

module is performed on Affine Transform to obtain

Substitution box, and performed on Inverse Affine Transform

to get inverse substitution box.

Fig.6 MixColumn output wavefroms

Fig.7 ShiftRows output

Fig.8 S-Box Output Waveforms In Xilinx

Fig.9 S-Box Output Waveforms Of Lut

Fig.10 Synthesized Output Of S-Box In Cadence

 Table 1: Comparison Of Different algorithms

We considered different algorithms in our work.

Where lut method is popular, in which the standard

calculated table of s-box is implemented directly. Which

consumes large hardware and area. S-box in gf(16) is one of

architecture we worked on, where gf(256) is converted to

gf(16) and multiplicative inverse is found and processed to

affine transform and s-box is obtained. By calculating all

possible combination of multiplicative inverse and inverse

module, results are tabulating and used in programming.

Where in our proposed design implemented by using

polynomials in gf(2
8
),gf(2

4
) and gf(2

2
) as explained in above

sections.

VI. CONCLUSION

The Results of Our Design Is Verified And tabulated in

table.2. Where cell number and area are reduced BY 579,

1987µ
2
. And comparing with base paper [1] cell number and

area is improved by 30%. the final results obtained are

plotted in fig.7. Cadence 180nm technology is used to

calculate the parameters. This work can be performed on

asic[1].

Architecture Number

of Cells

Area

(µm
2
)

Timing(ps) Total

Power(nW)

LUT 736 2772 3265 36220

S-Box in

GF(16)

227 1255 6467 23694

Using

Multiplcative

Inverse

485 1821 2114 27486

Using

inverse

module

167 842 4375 38773

 [1] 178

3988.35

 ----- 61112

Our design 152 785 4068 35667

 International Journal of Engineering Research in Electronic and Communication

 Engineering (IJERECE) Vol 3, Issue 5, May 2016

 580

From table.1 we conclude that combinational logic

implementation of s-box gives more efficient and compact

platform.

REFERENCES

[1] P.V.S.ShastIy, Anuja Agnihotri, Divya Kachhwaha,

Jayasmita Singh, Dr.M.S.Sutaone ” A Combinational

Logic Implementation of S-box of AES” 978-1-61284-

857-0/11/$26.00 @2011 IEEE

[2] Xinmiao Zhang, Keshab K. Parhi “Implementation

Approaches for the Advanced EncryptionStandard

Algorithm” 1531-636X/12/$10.00©2002IEEE

[3] J. Daeme, V.Rijmen “ AES proposal: Rijndael. NIST

AES Proposal” April 2003

[4] Bahram Rashidi, Bahman Rashidi “ Implementation of

An Optimized and Pipelined Combinational Logic

Rijndael S-Box on FPGA” I. J. Computer Network and

Information Security, 2013, 1, 41-48 Published Online

January 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijcnis.2013.01.05

[5] Saleh Abdel-hafeez, Ahmed Sawalmeh, Sameer

Bataineh “HIGH PERFORMANCE AES DESIGN

USING PIPELINING STRUCTURE OVER GF((2
4
)

2
)”

2007 IEEE International Conference on Signal

Processing and Communications (ICSPC 2007), 24-27

November 2007, Dubai, United Arab Emirates

