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Abstract— Substitution Box(S-Box) is an important integral part of modern cryptographic cipher techniques like Advanced 

Encryption Standard (AES).  There exists a bulk literature devoted to the implementation of AES. Combinational logic of 

implementation attains high throughput in terms of parameters like speed, area, delay etc. This paper represents the working 

principle of AES, Novel algorithmic approaches for S-Box. We mainly concentrated on combinational logic implementation of S-

Box in order to Improve Area. AES is programmed and executed on Xilinx 14.7 version, Spartan 3 Family, ModelSim Simulator. 

Cadence 180nm tool is used to verify the parameters. We examine the current work which exploits the mathematical properties of 

S-Box. Using this technique throughput is increased by 30%. We verified individual modules separately and waveforms are 

obtained.  

 

Index Terms—Advanced Encryption Standard (AES),Substitution Box(S-Box) 

 

 
I. INTRODUCTION 

 
  Cryptography plays a vital role in the network 

security; security issues have become prominent as 

technology is developed. The National Institute of Standards 

and Technology(NIST) declared Rijndael Block cipher 

method as AES algorithm in 2001 [1]. AES performs based 

on symmetric key algorithm where in encryption and 

decryption both uses same key.  The length of block used for 

processing is 128 bit, length of key can be varied to multiples 

of 32 i.e 128,192 or 256bits. From 128-bit key, algorithm 

generates 10 keys of 128-bit each, which are placed into 4X4 

arrays. Simultaneously plain text is divided into 4X4 arrays 

each are of 128-bits. Each of 126-bit plain text block is 

processed in 10 rounds (number of rounds varies with key 

size). After 10
th

 round new code is generated. Every 

individual byte is substituted in an S-Box and replaced by 

reciprocal on Galois Field (GF). AES algorithm undergoes 

four transformations namely AddRound key, substitution (S-

Box), Mix columns, Shift rows [2].  

 

S-Box is the main and costliest block in AES, 

several different methods for implementation have been 

proposed in literature. S-Box is a non-linear substitution step 

where in individual byte is replaced with another byte 

according to Lookup table [2]. We compared our results with 

different algorithms and standard lookup table where lookup 

table (LUT) results with 736 cell numbers, area 2772 square 

meters. Combinational logic is prominent and emerging 

technology where implementation of S-Box is achieved by 

operating on Galois Fields (GF), Computation of S-Box 

using GF results better than direct implementation or using 

LUT. 

 

The sections of this paper are analyzed as follows. 

Section II briefs the basic understanding and functionality of 

transformations in GF while calculating S-Box, section III 

elaborate the proposed architecture of S-Box using 

combinational logic, Section IV provides the obtained results 

and compares with Base paper. 

 

II. AES WORKING PRINCIPLE 

 

 
Fig.1 AES basic block diagram 
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                                     Fig.2 AES flowchart 

 

As shown in above figure AES mainly perform on 

input which can be text, image or video. And encryption and 

decryption are done as shown Fig.1. Detailed procedure of 

AES is shown in Fig.2.  

a. Add Round Key 

Add Round Key is the initial step, where the sub key is 

combined and performed with state. Sub key is obtained from 

main key using Rijndael‟s key. Size of key and state are kept 

same. Su bkey is combined with each byte of state with 

corresponding to bitwise Ex-or[1]. 

b. Shift Rows 

This is the module of AES operates on rows. It operates by 

shifting each row cyclically, the first row is left unchanged. 

For shifting certain rows offset is set.  2
nd

, 3rd rows are 

shifted by one left shift, two shifts. Shifting rows remains 

same for different block sizes 128 bits, 192 bits and 256 bits. 

Row m is shifted left circularly by m-1 bytes[2]. 

c. Mix Column 

Mix Column step is one of the complicated step in 

AES, four bytes of each column are combined using linear 

transformation. The function takes four bytes as input.  

During operation, each column is transformed using matrix. 

The matrix retains in all AES operation. 

 
We are mainly dealing with S-Box and detailed explanation 

is given in preceding sections.  

III. PRELIMINARIES FOR GF TRANSFORMATION 

a. Isomorphic Mapping and Inverse Isomorphic Mapping 

of GF: 

In order to attain transformation of higher order 

Galois Fields into lower order, irreducible polynomials are 

used as given in equation (1) 

  

GF(2
4
)             GF(2

8
) ; I2(X) = x

2
+x+λ; 

GF(2
2
)             GF(2

4
) ; I1(X) = x

2
+x+φ; 

GF(2)             GF(2
2
) ; I0(X) = x

2
+x+1; 

 

Where φ={10}  λ={1100}                                                  (1) 

 

The implementation of S-Box involves 8-bit 

multiplicative 

Inverse module followed by Affine Transform (AT). The 

inverse SubByte can be generated using Inverse AT. Where 

both SubByte and Inverse SubByte can be generated 

together.  The bytes are represented in GF(2
8
) are viewed in 

terms of polynomial forms. All the operations in GF(2
8
) are 

obtained by taking Modulo-2 operations using corresponding 

fixed irreducible polynomial p(x). 

 

p(x) = x
8
 + x

4
 + x

3
+ x + 1                                                  (2) 

 

Inversion in GF(2
8
) has many sublevels. Multiplicative 

inverse can be calculated by reducing complex GF(2
8
) into 

lower order fields like GF(2
4
) and GF(2

2
). Multiplicative 

inverse can be given as in equation (3). 

 

(bx+c)
-1

= b(b
2
B+bcA+c

2
)

-1
x+(c+bA)(b

2
B+bcA+c

2
)

-1         
(3) 
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Fig.3 Multiplcative Inverse module in GF(2

4
) 

 

The legends of block diagram are as follows 

  δ Isomorphic mapping to composite fields 

in GF 

Squarer Squaring in GF(2
4
)  

 Multiplication inversion  

d* λ Multiplication with constant λ in GF(2
4
)  

  

Addition operation in GF(2
4
)  

 

  

Multiplication operation in GF(2
4
)  

 

   δ
-1

 Inverse isomorphic mapping to GF(2
8
) 

Multiplicative Inverse (MI) in GF 

Calculation for the multiplicative inverse in 

composite fields cannot be directly applied to byte which is 

based on GF(2
8
). That Byte or element has to be mapped to 

its Composite field representation by applying to an 

isomorphic function, δ. Followed by performing the MI, the 

result of MI  also have to be mapped back from its composite 

field to its equivalent in GF(2
8
) via the inverse isomorphic 

function, δ
-1

. Where δ and δ
-1

 are represented in an 8x8 

matrix. Let q be the element in GF(2
8
), then the isomorphic 

mapping and its inverse isomorphic mapping can be written 

as δ*q and δ-1*q, which is a obtained by matrix 

multiplication as shown below, where q7 indicates most 

significant bit(MSB) and q0  least significant bit(LSB).  

10100000

11011110

10101100

10101110

11000110

10011110

01010010

01000011



 
 
 
 
 
 
 
 
 
 
 
  

    
1

11100010

11011110

01100010

01110110

00111110

10011110

00110000

01110101

 

 
 
 
 
 
 
 
 
 
 
 
  

      (4) 

 

Affine Transformation 

The Multiplicative Inverse output has been 

computed, and affine transformation is carried out on the 

resulted polynomial[3]. The affine transformation is a simple 

matrix multiplication and XOR with a constant column 

matrix. Affine transformation over a finite field i.e. GF (2
8
) 

can be given as below equation, 

 

7

6

5

4

3

2

1

0

11111000 0

01111100 1

00111110 1

00011111 0

10001111 0

11000111 1

11100011 1

11110001 0

x

x

x

x

x

x

x

x



    
    
    
    
    
      
    
    
    
    
    
        

                   (5)    

 

IV. PROPOSED WORK 

Squarer 

Equations for squaring a element in GF(2
4
) is taken 

from [1], where in converting the GF(2
4
) elements into 

GF(2
2
) by using  irreducible polynomial. Hence the Boolean 

expression can be given as equation (6) 

3 3

2 3 1

1 2 1

0 3 1 0

;

;

d b

d b b

d b b

d b b b



 

 

  

                                                  (6) 
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Multiplication with constant ( λ) 

Modulo reduction can be performed and simplified 

by substituting x
2
 = x + φ using the irreducible Polynomial. 

The equations for multiplication with constant are derived in 

[4]. The polynomial „d‟ is result of  squarer of polynomial „b', 

is  multiplied with the constant  λ = {1 1 0 0}. This operation 

can be further simplified and 'g' could be achieved as simple 

Boolean expressions, given in equation (7). 

3 2 0

2 3 2 1 0

1 3

0 2

g d d

g d d d d

g d

g d

 

   





                                   (7) 

 

Multiplication in GF(2
4
) 

Multiplication in GF(2
4
) is the major block in 

Combinational logic architecture, which consumes more area 

and complicated to analyze. Multiplication of polynomial in 

GF is performed as given in fig 4. Which include three major 

blocks of multiplication. These multiplication blocks carried 

out in GF(2
2
), the equivalent design is given in fig 3.  

Equations derived for multiplication block in [1], the 

simplified equation for multiplication in GF(2
2
) can be given 

as below equation(8) 

 

(1) (1) (0) (0) (1) (1) (1)

(0) (0) (0) (1) (1)

z x y x y x y

z x y x y

  

 
             (8) 

 

 

 
 

Fig.4 Multiplier In Gf(2
4
) Embedded With       Multipliers 

In Gf(2
2
) 

According to literature this block is directly 

implemented as shown in Fig.3, and the above equations are 

used. Using Ex-or gates leads to increase in area and delay. 

To overcome this hurdle we tried to simplify the equation and 

proposed a new structural design as shown in Fig.5 

  
 

Fig.5 Proposed Architecture for GF (2
2
) Multiplier 

 

Where Ex-or gate is replaced by the normal and, or 

gates. Which has given overall optimized result. This 

proposed Multiplication design of GF(2
2
) is used in Fig.4  

The results for each block and module are plotted in next 

section. 

Multiplicative Inverse: 

Multiplicative inverse is sub module of 

combinational logic, can be implemented directly using the 

standard table as given below. The equations are obtained 

from [1] 

 
3

3 2 1 3 2 3 0

2

2 2 1 3 0 3 2 1 3 2 0

1

3 1 2 2 0 3 1 0 3 2 1

0

0 1 2 2 1 3 1 3 0 3 2 0 3 2 1

q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q q q q q









    

    

     

       

                                                                             

(9) 

V. RESULTS 

 

We worked on many methods to achieve the 

standard table for S-Box, and calculated varies parameters for 

each methods. Combinational logic method is the efficient 

method which attained less area. We tried to optimize each 

sub module of whole architecture shown in fig.1.  Could 
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achieve efficient result in inverse delta module calculation, 

multiplication in GF(2
2
) which in turn enhanced the result of 

multiplication in GF(2
4
). The result of multiplicative inverse 

module is performed on Affine Transform to obtain 

Substitution box, and performed on Inverse Affine Transform 

to get inverse substitution box. 

 

 
Fig.6 MixColumn output wavefroms 

 

 
Fig.7 ShiftRows output 

 

 
Fig.8 S-Box Output Waveforms In Xilinx 

 

 
Fig.9 S-Box Output Waveforms Of Lut 

 
Fig.10 Synthesized Output Of S-Box In Cadence  

 

       

 Table 1: Comparison Of Different algorithms 

 

We considered different algorithms in our work. 

Where lut method is popular, in which the standard 

calculated table of s-box is implemented directly. Which 

consumes large hardware and area. S-box in gf(16) is one of 

architecture we worked on, where gf(256) is converted to 

gf(16) and multiplicative inverse is found and processed to 

affine transform and s-box is obtained. By calculating all 

possible combination of multiplicative inverse and inverse 

module, results are tabulating and used in programming. 

Where in our proposed design implemented by using 

polynomials in gf(2
8
),gf(2

4
) and gf(2

2
) as explained in above 

sections. 

 

VI. CONCLUSION                                                                    

 

The Results of Our Design Is Verified And tabulated in 

table.2. Where cell number and area are reduced BY 579, 

1987µ
2
. And comparing with base paper [1] cell number and 

area is improved by 30%. the final results obtained are 

plotted in fig.7. Cadence 180nm technology is used to 

calculate the parameters. This work can be performed on 

asic[1]. 

Architecture  Number 

of Cells 

Area 

(µm
2
) 

Timing(ps) Total  

Power(nW) 

LUT 736     2772      3265    36220 

S-Box in 

GF(16) 

227     1255      6467     23694 

Using 

Multiplcative 

Inverse  

485     1821     2114     27486 

Using 

inverse 

module  

167     842     4375    38773 

   [1] 178  

3988.35 

 -----   61112 

Our design 152 785   4068    35667 



 

 

 International Journal of Engineering Research in Electronic and Communication 

               Engineering (IJERECE) Vol 3, Issue 5, May 2016 
 

 

         580                  

  

 

 

    

From table.1 we conclude that combinational logic 

implementation of s-box gives more efficient and compact 

platform. 
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