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Abstract:  State-of-the-art automatic speaker recognition (SR) has been dominated by Gaussian mixture model-universal 

background model (GMM-UBM) based i-vector feature extraction methods. Although these systems are robust, extraction of 

ivectors is very time consuming and a separate classifier needs to be trained for decision making in the end. Inorder to alleviate the 

above disadvantages, in this paper we propose to use deep neural networks for end-to-end speaker recognition. We perform several 

experiments to determine the best suited architecture, the hyper-parameter tuning algorithm and the initialization scheme for SR 

task. The proposed method combines feature extraction and classification step, and is of very low foot print. Through objective 

metric (equal error rate) we show that the proposed method outperforms the GMM-UBM conventional system 

 

 
I. INTRODUCTION 

 

Automatic speaker recognition refers to the task 

of identifying the speaker in a given speech utterance. This 

system has many applications ranging from e-commerce, 

forensics and law-enforcement [1]. Depending on whether 

the user is asked to speak a fixed prompt (like for instance 

“Ok Google”) or an unrestricted speech, speaker 

recognition (SR) can be classified into text-dependent or 

text-independent speaker recognition respectively. In this 

paper, we will focus on the more general text-independent 

SR system, although the techniques discussed will apply 

equally well to the former case. Most of the successful 

approaches to speaker recognition are based on generative 

models like Gaussian mixture model-universal background 

model (GMM-UBM) [2] and its successive refinements 

like using support vector machines as backend [3], factor 

analysis techniques like i-vector approach [4] [5] [6]. 

 

The current state of the art approach, which uses 

the vector for speaker recognition proceeds in two stages. 

Firstly, an utterance level feature is extracted using factor 

analysis (called front-end) and then a classifier is trained 

(called backend) discriminatively to improve the speaker 

recognition [7]. This method has shown to be very robust 

against the channel variations and the session variations 

[5]. Another task that is closely related to speaker 

recognition is identifying the language in the spoken 

utterance or language identification (LI) and most of these 

methods have been successfully applied for LI task as well 

[8] [9]. However, this method requires high computational 

power to extract i-vectors for the test utterances during 

verification time. There have been attempts to reduce the 

computational cost of i-vector feature extraction [10]. 

Another approach would be to merge both the feature 

extraction and decision making step into a single step and 

thereby reducing the computational over-head. 

 

II. RELATION TO PRIOR WORK 

 
Deep learning is a recent machine learning 

methodology used to learn task-specific features by 

discriminative learning [11]. Given the recent success of 

deep learning methods in automatic speech recognition 

[12] [13], some researchers have explored usage of deep 

learning in speaker and language recognition tasks [14] 

[15] [16] [17]. There are two ways in which one can use 

deep learning for SR or LR tasks, one as a feature extractor 

and the other as a classifier. Various researchers have tried 

using deep belief networks (DBN), and deep neural 

networks with bottleneck (BN) layer for extracting features 

from the speech signal and then classifying using the 

standard probabilistic linear discriminate analysis (PLDA) 

classifier. These groups reported improvements in the 

performance compared to GMM-UBM based approaches. 

Neural networks in the auto-associative mode have been 

explored earlier also as an alternative to GMM for speaker 

verification [18] [19]. Some of the current studies can be 

seen as an extension of these earlier works in the light of 

latest advances in deep learning [14] [15] [20]. 

 

On the other-hand, there have been fewer attempts 

(very recent) in using deep neural network architectures for 

both learning features and discriminating speakers 

simultaneously, in [21] [22], convolution neural networks 

(CNN) are used for end to end language recognition. In 

this paper, similar in spirit to these recent attempts, we 

propose to explore DNNs for the SR task in an end-to-end 

fashion where feature extraction and classification are 

jointly performed. This not only reduces the computational 

over-head of feature extraction, but also makes the model 

viable to be embedded into a low foot-print system. 
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Fig. 1: DNN based SR architecture 

 

III. DEEP NEURAL NETWORKS FOR SR 

 

In this section, we will present the details of our 

proposed method for speaker recognition. The basic 

architecture of deep neural network for speaker recognition 

is shown in Fig. 1. Here, a closed set of N speakers in the 

database are considered, consequently the task of speaker 

recognition is to assign one of these identities to a spoken 

utterance given at the test time based on a similarity 

measure. It boils down to a multiclass classification 

problem having N classes. So a neural network as shown in 

Fig. 1 with a soft max layer having N nodes can be trained 

to minimize cross-entropy loss function for this multiclass 

classification problem. 

 

However, neural networks with more than one 

hidden layer they are found to be difficult to optimize [23]. 

After initial success of pre-training scheme for training 

deep neural networks [24], investigations like [25], 

confirmed that the difficulty in training is most likely due 

to poor initialization schemes used earlier. Most recently 

there has been plethora of papers on better schemes for 

initializations [26] [27] [28]. In [27], it has been indicated 

that random initialization with orthogonality constraints are 

probably better than other schemes. 

 

On the other hand, there have also been 

modifications to the non-linearity used which have been 

shown to improve the performance of deep networks in 

various application domains [29] [30]. Improvements over 

using better first-order gradient descent techniques as in 

[31] [32] [25], instead of naïve stochastic gradient descent 

with classical momentum (SGDCM) have also led to better 

optimum and faster training of the networks. Keeping these 

various developments in view, we investigated how to train 

deep neural networks for SR task. Especially the effect of 

depth and width of neural network architecture, hyper-

parameter optimization techniques and initialization 

techniques has been explored in this work. 

Below we briefly present the various initialization 

schemes and hyper-parameter optimization schemes 

implemented. The implementation is made available online 

1. 

3.1. Normalized initialization (NI) 

This initialization scheme was proposed in [23] 

for training deep neural nets. Nin and N out are the number 

of nodes/units in the current layer and the next layer 

respectively. 

 

 
Where U(�a; a) is the uniform distribution in the interval 

(�a; a). 

3.2. Random walk initialization (RW) 

This recently proposed initialization [26], assumes 

that weights are drawn randomly from a zero-mean 

Gaussian distribution and have to be scaled by a factor g to 

make sure that gradients don’t explode or vanish after 

depth D. The scale factor g is different for different non-

linearity. 

 Where N is the number of nodes in the current layer. 

3.3. SGD-CM 

The most widely used stochastic gradient descent 

rule is given below. A momentum term is added with a 

momentum factor _. This term essentially adds a scaled 

version of previous gradients to the current gradient. 

 
Where _t refers to the parameters, gt is the 

gradient and the _ is the learning rate. It is often very 

difficult to set learning rate and momentum factor 

parameters of SGD-CM update rule and is usually set by 

trial and error. Also in this rule learning rate for every 

parameter is constant and fixed, most of the times it is 

desirable to have a parameter-wise learning rate without 

increasing computation and storage. 

3.4. ADAM 

Adaptive moments (ADAM) is a recently 

proposed update rule [32], which alleviates the problem of 
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having to manually fine tune learning rate hyper-

parameter. This method proposes a simple per-parameter 

learning rate using running averages of first and second-

order moments of gradients. 

 
Where _1; _2; _ are the hyper-parameters in this 

case. These hyper-parameters are shown to be less 

sensitive than the _and _ in SGD-CM as an adaptation 

procedure is in-built in the update steps. 

 

IV. EXPERIMENTAL DETAILS AND RESULTS 

 

For our experiments we use TIMIT database. A 

subset of 462 speakers is taken. Each speaker has 10 

spoken utterances. We split the total data of speaker as 

8/1/1 for training/ validation/testing respectively. There are 

total of 3696 wave files for training, 462 each for testing 

and validation. Static Mel-frequency costrel coefficients 

(MFCC’S) are used as acoustic features for both baseline 

and proposed SR systems. 

 

The dimensionality of MFCC’S used is 13. As our 

baseline system we trained a GMM-UBM system using 

open-source software toolkit [33]. In the GMM-UBM 

system we have varied the number of mixture components 

from 8 to 128 in the increasing powers of 2. The EER 

results for the baseline are shown in Table. 1. The DET 

curve for the best GMMUBM system can be seen in Fig. 3. 

The EER decreases as the number of mixtures is increased 

but the rate of decrease in the EER seems to be saturating 

as we increase the number of mixtures from 64 to 128. 

 
Fig. 2: figure Test error curves with NI initialization 

 

Table 1: Performance of baseline GMM-UBM system 

 
For DNN, we trained networks of different 

architectures. The depth of architectures was varied from 1 

to 4 layers and the breadth was also varied per layer with 

either 500 or 1000 units in each layer. Each DNN was 

trained for 50 epochs. Input layer is linear and has 13 

nodes, the output layer is a Soft max layer and the number 

of nodes was set to the number of speakers in the database 

(in this case it was 462). The cross-entropy loss function 

was minimized using a mini batch SGD algorithm. The 

mini batch size was set to 1000. All the DNNs were trained 

using two hyper-parameter learning algorithms one with 

naive SGD-CM and the other with more recent ADAM 

[32] method. 

The test set error (misclassification in %) per 

update step is plotted for each of the architectures in Fig. 2. 

It can be seen from the test error plots that deeper 

architectures perform better than the shallower counter 

parts (a similar observation was made with 1000 units 

width and hence the results are not reported here to avoid 

redundancy). 

The EER is reported in the Table. 2. DNN with 4 

hidden layers, with REL U non-linearity using simple 

ADAM (_ = 0:001) 0.8658 EER was achieved. After this, 

the system has been retrained with ADAM (_ = 0:00001) 

optimizer which Outperformed our baseline GMM-UBM 

system as shown un der the ADAM (_ = 0:001) + ADAM 

(_ = 0:00001) column in Table. 2. The DET curve for the 

best GMM-UBM system can be seen in Fig. 4. 
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Fig. 3: figure DET curve for best GMM-UBM system 

 
Fig. 4: figure DET curve for best DNN system. 

 

The above results are with NI initialization 

scheme, up to two layers of depth similar results were 

observed with RW initialization scheme. However with 

more than two hidden layers there seemed to be vanishing 

gradients problem with this initialization. We have not 

compared with the state-of-the-art i-vector based SR 

system because of two reasons, (1) the objective of this 

study is investigate the use of deep neural nets for end to- 

end SR and not to provide the best possible system for SR 

and (2) the proposed system architecture is different from 

the state-of-the-art architecture of front-end and back-end 

and hence the comparison may not be straightforward. 

 

 

Table 2: Performance proposed DNN based system 

 
 

V. CONCLUSIONS AND FUTURE WORK 

 

It can be seen from the current study that a deep 

neural network with sufficient depth can outperform 

traditional SR systems based on GMMs. The resulting 

system can be easily incorporated on to the low-foot print 

devices because of the very low computation complexity 

during the forward pass and the storage capacity for the 

network parameters. The current study can be extended in 

many ways. Especially from the input feature dimension, 

we can use more robust features like contextual MFCC’S 

rather than current frame alone. Also, bottle neck features 

can be appended to the capstan features. Source features 

have been shown to have complementary information to 

that of systems features. Applying voice activity detection 

also might improve the results. From the model 

perspective, a more robust dropout based training can be 

used so that it can act as a better regularize that the simple 

l2 weight decay used here. We look forward to incorporate 

these in our further studies on deep learning for SR task. 

An investigation into how recurrent neural networks [34] 

and DNN can be combined to overcome the frame based 

training can be made. 
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