
ISSN (Online) 2394-6849 

 

International Journal of Engineering Research in Electronics and Communication 

Engineering (IJERECE)  

Vol 3, Issue 8, August 2016 

 

                 179                  

  

 

 

Polar Code Encoder Based On DCT Architecture 
 

 
[1]

 K. Jaya Lakshmi 
[2]

 P.Ravi Kumar 

        
[1]

 M.Tech-VLSID 
[2]

 Senior Assistant Professor 
[1][2]

 Department of ECE, Shri Vishnu Engineering College for Women (Autonomous), Bhimavaram, India
 

Abstract: -- A family of low-complexity methods that polarize all discrete memoryless processes is introduced. In both data 

transmission and data compression, codes based on such methods achieve optimal rates, i.e., channel capacity and source entropy, 

respectively. The error probability behavior of such codes is as in the binary case.Polarizing capabilities of recursive methods are 

shown to extend beyond memoryless processes: Any construction that polarizes memoryless processes will also polarize a large 

class of processes with memory. For this DCT operation  
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I. INTRODUCTION 

  Polar code is an encoding/decoding scheme that 

provably achieves the capacity of the class of symmetric 

binary memoryless channels. Here addressing two important 

problems regarding polar codes: the construction of polar 

codes and performance of polar codes. First, we consider the 

problem of efficiently constructing polar codes over 

symmetric binary discrete memoryless channels and provide 

some algorithms for channel quantization that can be 

analyzed for complexity and accuracy. In particular, we show 

that the algorithm can find almost all the “good” channels 

with computing complexity which is essentially linear in 

block-length. Next, different methods and algorithms to 

enhance the performance of the successive cancellation polar 

decoder. Numerical evidence as well as some mathematical 

analysis to show that the performance of polar codes are 

improved by using these algorithms. 

 

Huawei has been one of the leading companies 

pushing Polar Codes for 5G. The flexibility features of Polar 

codes make them very appealing for many applications 

(high-data rate, short-block transmissions, etc) of 5G and 

recent experiments have shown that they outperform LDPC 

and Turbo Codes in various regimes. 

 

Polar codes, invented by Arıkan [3], achieve the 

capacity of arbitrary binary-input symmetric DMCs. 

Moreover, they have low encoding and decoding complexity 

and an explicit construction. Following Arıkan’s seminal 

paper [3], his results have been extended in a variety of 

important ways. In [22], polar codes have been generalized to 

symmetric DMCs with non-binary input alphabet. In [14], the 

polarization phenomenon has been studied for arbitrary 

kernel matrices, rather than Arıkan’s original 2 × 2 

polarization kernel, and error exponents were derived for 

each such kernel. It was shown in [24] that, under list-

decoding, polar codes can achieve remarkably good 

performance at short code lengths. In terms of applications, 

polar coding has been used with great success in the context 

of multiple-access channels [2, 23], wiretap channels [16], 

data compression [1, 4], write-once channels [6], and 

channels with memory [21]. In this paper, however, we will 

restrict our attention to the original setting introduced by 

Arıkan in [3]. Namely, we focus on binary-input, discrete, 

memoryless, symmetric channels, with the standard 2 × 2 

polarization kernel under standard successive cancellation 

decoding. 

 

A method for efficiently constructing polar codes is 

presented and analyzed. Although polar codes are explicitly 

de- fined, straightforward construction is intractable since the 

resulting polar bit-channels have an output alphabet that 

grows exponentially with the code length. Thus the core 

problem that needs to be solved is that of faithfully 

approximating a bit-channel with an intractably large 

alphabet by another channel having a manageable alphabet 

size. We devise two approximation methods which 

“sandwich” the original bit-channel between a degraded and 

an upgraded version thereof. Both approximations can be 

efficiently computed, and turn out to be extremely close in 

practice. We also provide theoretical analysis of our 

construction algorithms, proving that for any fixed ε > 0 and 

all sufficiently large code lengths n, polar codes whose rate is 

within ε of channel capacity can be constructed in time and 

space that are both linear in n. 
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In information theory, a polar code is a linear block error 

correcting code developed by ErdalArıkan. It is the first code 

with an explicit construction to provably achieve the channel 

capacity for symmetric binary-input, discrete, memoryless 

channels (B-DMC) with polynomial dependence on the gap 

to capacity. Notably, polar codes have encoding and 

decoding complexity, which makes them practical for many 

applications. 

 

Channel polarization, introduced by Arıkan [1], is a 

phenomenon by which, given a binary-input discrete 

memoryless channel, virtual channels between the bits at the 

input of a linear encoder and the channel output sequence are 

created, such that the mutual information in each of these 

channels converges to either zero or one as the code length 

tends to infinity; the proportion of channels with mutual 

information close to one converges to the original channel’s 

mutual information. These virtual channels are created by 

recursively applying channel combining and splitting steps. 

Polar codes of rate R = K/N are linear codes whose generator 

matrix is such that its rows induce the K virtual channels with 

highest mutual information among all N possible channels.  

The scheme behaves as if uncoded bits were sent through 

these channels. This construction, together with polarization, 

explicitly gives a code of rate close to the mutual information 

of the channel with vanishing error probability. We propose a 

different construction of polar codes. Instead of choosing the 

best K virtual channels, we choose all channels whose mutual 

information is above a certain threshold which might depend 

on the code length. This new construction is shown to 

preserve the capacity-achieving property of Arıkan’s original 

construction as long as the threshold function is bounded 

appropriately. This construction induces accurate closed-

form upper and lower bounds to the minimum distance of the 

resulting codes when the design channel is the binary erasure 

channel (BEC). Our results sharpen existing bounds in the 

literature on the minimum distance of polar codes [2]. 

 

II. LITERATURE SURVEY 

 

In his seminal work of 1948, Shannon had 

characterized the highest rate (speed of transmission) at 

which one could reliably communicate over a discrete 

memoryless channel (a noise model); he called this limit the 

capacity of the channel. However, he used a probabilistic 

method in his proof and left open the problem of reaching 

this capacity with coding schemes of manageable 

complexities. In the 90’s, codes were found (turbo codes and 

LDPC rediscovered) with promising results in that direction. 

However, mathematical proofs could only be provided for 

few specific channel cases (pretty much only for the so-called 

binary erasure channel). In 2008,  ErdalArıkan atBilkent 

University inventedpolar codes, providing a new 

mathematical framework to solve this problem. 

Besides allowing rigorous proofs for coding 

theorems, an important attribute of polar codes is, in my 

opinion, that they bring a new perspective on how to handle 

randomness (beyond the channel coding problem). Indeed, 

after a couple of years of digestion of Arıkan’s work, it 

appears that there is a rather general phenomenon underneath 

the polar coding idea. The technique consist in applying a 

specific linear transform, constructed from many Kronecker 

products of a well-chosen small matrix, to a high-

dimensional random vector (some assumptions are required 

on the vector distribution but let’s keep a general framework 

for now). The polarization phenomenon, if it occurs, then 

says that the transformed vector can be split into two parts 

(two groups of components): one of maximal randomness 

and one of minimal one (nearly deterministic). The 

polarization terminology comes from this antagonism. We 

will see below a specific example. But a remarkable point is 

that the separation procedure as well as the algorithm that 

reconstructs the original vector from the purely random 

components have low complexities (nearly linear). On the 

other hand, it is still an open problem to characterize 

mathematically if a given component belongs to the random 

or deterministic part. But there exist tractable algorithms to 

figure this out accurately. 

III. EXISTING SCHEME 

The fast Fourier transform (FFT) is one of the most 

important algorithms in the field of digital signal processing. 

It is used to calculate the discrete Fourier transform (DFT) 

efficiently. In order to meet the high performance and 

realtime requirements of modern applications, hardware 

designers have always tried to implement efficient 

architectures for the computation of the FFT. In this context, 

pipelined hardware architectures [1]–[24] are widely used, 

because they provide high throughputs and low latencies 

suitable for real time, as well as a reasonably low area and 

power consumption. There are two main types of pipelined 

architectures: feedback (FB) and feedforward (FF).  

On the one hand, feedback architectures [1]–[14] are 

characterized by their feedback loops, i.e., some outputs of 
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the butterflies are fed back to the memories at the same stage. 

Feedback architectures can be divided into Single-path Delay 

Feedback (SDF) [1]–[6], which process a continuous flow of 

one sample per clock cycle, and Multi-path Delay Feedback 

(MDF) or parallel feedback [7]– [14], which process several 

samples in parallel. On the other hand, feedforward 

architectures [4], [5], [15]–[19], also known as Multi-path 

Delay Commutator (MDC) [4], do not have feedback loops 

and each stage passes the processed data to the next stage. 

These architectures can also process several samples in 

parallel.  

In current real-time applications, the FFT has to be 

calculated at very high throughput rates, even in the range of 

GSamples/s. These high-performance requirements appear in 

applications such as Orthogonal Frequency Division 

Multiplexing (OFDM) [9]–[12], [22] and Ultra Wideband 

(UWB) [10]– [13]. In this context two main challenges can 

be distinguished. The first one is to calculate the FFT of 

multiple independent data sequences [22], [23]. In this case, 

all the FFT processors can share the rotation memory in order 

to reduce the hardware [22]. Designs that manage a variable 

number of sequences can also be obtained [23].  

The second challenge is to calculate the FFT when 

several samples of the same sequence are received in parallel. 

This must be done when the required throughput is higher 

than the clock frequency of the device. In this case it is 

necessary to resort to FFT architectures that can manage 

several samples in parallel. As a result, parallel feedback 

architectures, which had not been considered for several 

decades, have become very popular in the last few years [8]–

[14].  

Conversely, not very much attention has been paid 

to feedforward (MDC) architectures. This paradoxical fact, 

however, has a simple explanation. Originally, SDF and 

MDC architectures were proposed for radix-2 [2], [17] and 

radix-4 [3], [17]. Some years later, radix- 2 2 was presented 

for the SDF FFT [4] as an improvement on radix-2 and radix-

4. Next, radix-2 3 and radix-2 4 , which enable certain 

complex multipliers to be simplified, were also presented for 

the SDF FFT. An explanation of radix-2 k SDF architectures 

can be found in [6]. Finally, the current need for high 

throughput has been meet by the MDF, which includes 

multiple interconnected SDF paths in parallel. However, 

radix- 2 k had not been considered for feedforward 

architectures until the first radix-2 2 feedforward FFT 

architectures were introduced a few years ago [24]. 

Given a 2N point sequence, x(n), and having taken 

the FFT of x(2n)+jx(2n+1) for 

n=0,1,...,N-1, we can now compute: 

    Given FFT(x(2n)+jx(2n+1)) = A(k)+jF(k), 

let X(k) = R(k) + jI(k), 

let c(k) = cos(pi*k/N), 

let s(k) = sin(pi*k/N), 

    2R(k) = A(k)+A(N-k) + c(k)(F(k)+F(N-k)) - s(k)(A(k)-

A(N-k)) 

    2I(k) = F(k)-F(N-k) - s(k)(F(k)+F(N-k)) - c(k)(A(k)-A(N-

k)) 

This will give us X(k).  Notice what happens when we let 

k'=N-k  (k'-> k for convenience): 

    2R(N-k) =  A(k)+A(N-k) - c(k)(F(k)+F(N-k)) + s(k)(A(k)-

A(N-k))     (1) 

    2I(N-k) = -F(k)+F(N-k) - s(k)(F(k)+F(N-k)) - c(k)(A(k)-

A(N-k))     (2) because c(N-k) = -c(k) and s(N-k) = s(k). 

Since the data needed to compute X(k) is the same 

as the data needed to compute X(N-k), we decided to 

compute them simultaneously during each iteration of the 

conversion stage loop.  So the algorithm does the conversion 

in k, N-k pairs (except for the mid-point). 

In order to calculate the inverse, we realize that we 

have four unknowns and four equations.  Thus it is a simple 

matter to derive: 

    2A(k) = R(k)+R(N-k) - s(k)(R(k)-R(N-k)) - c(k)(I(k)+I(N-

k)) 

    2F(k) = I(k)-I(N-k) + c(k)(R(k)-R(N-k)) - s(k)(I(k)+I(N-k))   

(3) and 
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    2A(N-k) =  R(k)+R(N-k) + s(k)(R(k)-R(N-k)) + 

c(k)(I(k)+I(N-k))   (4) 

    2F(N-k) = -I(k)+I(N-k) + c(k)(R(k)-R(N-k)) - 

s(k)(I(k)+I(N-k))       (5) 

We can, therefore, calculate A(k)+jF(k) from X(k), run the 

inverse FFT and regain x(n). 

IV. PROPOSING SCHEME 

 

 

Figure 1: 8 bit DCT configuration 

 

Discrete cosine transform (DCT) expresses a finite 

sequence of data points in terms of a sum of cosine functions 

oscillating at different frequencies. DCTs are important to 

numerous applications in science and engineering, from loss 

compression of audio and images to spectral methods for the 

numerical solution of partial differential equations. The use 

of cosine rather than sine functions is critical in these 

applications: for compression, it turns out that cosine 

functions are much more efficient (as described below, fewer 

functions are needed to approximate a typical signal), 

whereas for differential equations the cosines express a 

particular choice of boundary conditions.  

In particular, a DCT is a Fourier-related transform 

similar to the discrete Fourier transform (DFT), but using 

only real numbers. DCTs are equivalent to DFTs of roughly 

twice the length, operating on real data with even symmetry 

(since the Fourier transform of a real and even function is 

real and even), where in some variants the input and/or 

output data are shifted by half a sample. There are eight 

standard DCT variants, of which four are common. The most 

common variant of discrete cosine transform is the type-II 

DCT, which is often called simply "the DCT", its inverse, the 

type-III DCT, is correspondingly often called simply "the 

inverse DCT" or "the IDCT". 

  Two related transforms are the discrete sine 

transforms (DST), which is equivalent to a DFT of real and 

odd functions, and the modified discrete cosine transforms 

(MDCT), which is based on a DCT of overlapping data. Like 

any Fourier-related transform, discrete cosine transforms 

(DCTs) express a function or a signal in terms of a sum of 

sinusoids with different frequencies and amplitudes. Like the 

discrete Fourier transforms (DFT), a DCT operates on a 

function at a finite number of discrete data points. The 

obvious distinction between a DCT and a DFT is that the 

former uses only cosine functions, while the latter uses both 

cosines and sines (in the form of complex exponentials). 

However, this visible difference is merely a consequence of a 

deeper distinction: a DCT implies different boundary 

conditions than the DFT or other related transforms. The 

Fourier-related transforms that operate on a function over a 

finite domain, such as the DFT or DCT or a Fourier series, 

can be thought of as implicitly defining an extension of that 

function outside the domain. That is, once you write a 

function as a sum of sinusoids, you can evaluate that sum at 

any , even for where the original was not specified. The DFT, 

like the Fourier series, implies a periodic extension of the 

original function. A DCT, like a cosine transform, implies an 

even extension of the original function. DCT, like a cosine 

transform, implies an even extension of the original function. 

Illustration of the implicit even/odd extensions of DCT input 

data, for N=11 data points (red dots), for the four most 

common types of DCT (types I-IV). However, because DCTs 

operate on finite, discrete sequences, two issues arise that do 

not apply for the continuous cosine transform. 

Before starting hardware assembling, we use 

software application to simulate the algorithm.  The purpose 

of using software application for simulation, it is to verify the 

correctness of the logic function.  Skipping this step will 

result in frustration in finding errors during hardware 

assembling.  It is extremely difficult to locate the error during 

the VLSI design.  The following is the software application 

using Java language to manipulate the DCT algorithm. 

 

The main function of the program, at first to create a 

2-D arrays for substitute the 2-D matrix in the algorithm.  

The four for loops is for implement the 2 summations in the 

algorithm.  The method shown above performs a DCT 

algorithm on the 2-D array.  Use the output of the array, and 
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then perform transposition.  The array after transposition will 

be use for DCT algorithm for row transformation.  The 

output after this operation is the final result after the data 

compression.  However, the transposition method is not 

complete due insufficient knowledge of how transposition 

works in the DCT algorithm.  In the coming semester, fully 

understand the purpose of transposition is the first priority.  

After all the key components figure out, the entire VLSI 

architecture design will be design in details. 

 

 
The following is the matrix after the DCT algorithm 

 
The following matrix is the output after IDCT algorithm 

 
 

By compare the input matrix and the IDCT matrix, 

it is confident that the algorithm and software is correct.  

Because the IDCT matrix is suppose to be the same as the 

input matrix.  IDCT is to use DCT matrix to go back to the 

original matrix.  This way is to double-check the simulation 

process.  However, this software simulation does not include 

transposition part.  According to the output result acquired 

from Sachidanandan [52].  The simulation includes DCT and 

transposition.  The following is the output result in the paper, 

which it is the result we are expecting to have. 

The coming semester will insert the transposition into the 

Java code and hopefully the output will be the same as the 

matrix above. 

V. RESULTS 

 
Figure 2: Simulation Result for 32 Bit Data. 

 

Figure 2 results in DCT based 32bit polar codes were 

developed for encoding data bits based on discrete cosine 

transform algorithm which possess on both real and complex 

numbers. 

VI. CONCLUSION 

 

A good example makes the advantage apparent: no 

matter what value the concurrent number M design is able to 

finish encoding all words before its counterpart (overlapped 

design) outputs its first decoded word. Another point is the 

IGC, which is inspired by the DCT processor proposed and 

can be generated with a nice and easy recurrence 

relationship, is able to output all control bits required by the 

multiplexers on the fly. Therefore, no additional clock cycles 

are needed for computation of , which preserves the 

advantage of short latency. To the best knowledge of the 

authors, this is the first detailed design of similar module 

with such features. 
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