
ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 179

Polar Code Encoder Based On DCT Architecture

[1]

 K. Jaya Lakshmi
[2]

 P.Ravi Kumar

[1]

 M.Tech-VLSID
[2]

 Senior Assistant Professor
[1][2]

 Department of ECE, Shri Vishnu Engineering College for Women (Autonomous), Bhimavaram, India

Abstract: -- A family of low-complexity methods that polarize all discrete memoryless processes is introduced. In both data

transmission and data compression, codes based on such methods achieve optimal rates, i.e., channel capacity and source entropy,

respectively. The error probability behavior of such codes is as in the binary case.Polarizing capabilities of recursive methods are

shown to extend beyond memoryless processes: Any construction that polarizes memoryless processes will also polarize a large

class of processes with memory. For this DCT operation

Key words: Polar DCT, polarize

I. INTRODUCTION

 Polar code is an encoding/decoding scheme that

provably achieves the capacity of the class of symmetric

binary memoryless channels. Here addressing two important

problems regarding polar codes: the construction of polar

codes and performance of polar codes. First, we consider the

problem of efficiently constructing polar codes over

symmetric binary discrete memoryless channels and provide

some algorithms for channel quantization that can be

analyzed for complexity and accuracy. In particular, we show

that the algorithm can find almost all the “good” channels

with computing complexity which is essentially linear in

block-length. Next, different methods and algorithms to

enhance the performance of the successive cancellation polar

decoder. Numerical evidence as well as some mathematical

analysis to show that the performance of polar codes are

improved by using these algorithms.

Huawei has been one of the leading companies

pushing Polar Codes for 5G. The flexibility features of Polar

codes make them very appealing for many applications

(high-data rate, short-block transmissions, etc) of 5G and

recent experiments have shown that they outperform LDPC

and Turbo Codes in various regimes.

Polar codes, invented by Arıkan [3], achieve the

capacity of arbitrary binary-input symmetric DMCs.

Moreover, they have low encoding and decoding complexity

and an explicit construction. Following Arıkan’s seminal

paper [3], his results have been extended in a variety of

important ways. In [22], polar codes have been generalized to

symmetric DMCs with non-binary input alphabet. In [14], the

polarization phenomenon has been studied for arbitrary

kernel matrices, rather than Arıkan’s original 2 × 2

polarization kernel, and error exponents were derived for

each such kernel. It was shown in [24] that, under list-

decoding, polar codes can achieve remarkably good

performance at short code lengths. In terms of applications,

polar coding has been used with great success in the context

of multiple-access channels [2, 23], wiretap channels [16],

data compression [1, 4], write-once channels [6], and

channels with memory [21]. In this paper, however, we will

restrict our attention to the original setting introduced by

Arıkan in [3]. Namely, we focus on binary-input, discrete,

memoryless, symmetric channels, with the standard 2 × 2

polarization kernel under standard successive cancellation

decoding.

A method for efficiently constructing polar codes is

presented and analyzed. Although polar codes are explicitly

de- fined, straightforward construction is intractable since the

resulting polar bit-channels have an output alphabet that

grows exponentially with the code length. Thus the core

problem that needs to be solved is that of faithfully

approximating a bit-channel with an intractably large

alphabet by another channel having a manageable alphabet

size. We devise two approximation methods which

“sandwich” the original bit-channel between a degraded and

an upgraded version thereof. Both approximations can be

efficiently computed, and turn out to be extremely close in

practice. We also provide theoretical analysis of our

construction algorithms, proving that for any fixed ε > 0 and

all sufficiently large code lengths n, polar codes whose rate is

within ε of channel capacity can be constructed in time and

space that are both linear in n.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 180

In information theory, a polar code is a linear block error

correcting code developed by ErdalArıkan. It is the first code

with an explicit construction to provably achieve the channel

capacity for symmetric binary-input, discrete, memoryless

channels (B-DMC) with polynomial dependence on the gap

to capacity. Notably, polar codes have encoding and

decoding complexity, which makes them practical for many

applications.

Channel polarization, introduced by Arıkan [1], is a

phenomenon by which, given a binary-input discrete

memoryless channel, virtual channels between the bits at the

input of a linear encoder and the channel output sequence are

created, such that the mutual information in each of these

channels converges to either zero or one as the code length

tends to infinity; the proportion of channels with mutual

information close to one converges to the original channel’s

mutual information. These virtual channels are created by

recursively applying channel combining and splitting steps.

Polar codes of rate R = K/N are linear codes whose generator

matrix is such that its rows induce the K virtual channels with

highest mutual information among all N possible channels.

The scheme behaves as if uncoded bits were sent through

these channels. This construction, together with polarization,

explicitly gives a code of rate close to the mutual information

of the channel with vanishing error probability. We propose a

different construction of polar codes. Instead of choosing the

best K virtual channels, we choose all channels whose mutual

information is above a certain threshold which might depend

on the code length. This new construction is shown to

preserve the capacity-achieving property of Arıkan’s original

construction as long as the threshold function is bounded

appropriately. This construction induces accurate closed-

form upper and lower bounds to the minimum distance of the

resulting codes when the design channel is the binary erasure

channel (BEC). Our results sharpen existing bounds in the

literature on the minimum distance of polar codes [2].

II. LITERATURE SURVEY

In his seminal work of 1948, Shannon had

characterized the highest rate (speed of transmission) at

which one could reliably communicate over a discrete

memoryless channel (a noise model); he called this limit the

capacity of the channel. However, he used a probabilistic

method in his proof and left open the problem of reaching

this capacity with coding schemes of manageable

complexities. In the 90’s, codes were found (turbo codes and

LDPC rediscovered) with promising results in that direction.

However, mathematical proofs could only be provided for

few specific channel cases (pretty much only for the so-called

binary erasure channel). In 2008, ErdalArıkan atBilkent

University inventedpolar codes, providing a new

mathematical framework to solve this problem.

Besides allowing rigorous proofs for coding

theorems, an important attribute of polar codes is, in my

opinion, that they bring a new perspective on how to handle

randomness (beyond the channel coding problem). Indeed,

after a couple of years of digestion of Arıkan’s work, it

appears that there is a rather general phenomenon underneath

the polar coding idea. The technique consist in applying a

specific linear transform, constructed from many Kronecker

products of a well-chosen small matrix, to a high-

dimensional random vector (some assumptions are required

on the vector distribution but let’s keep a general framework

for now). The polarization phenomenon, if it occurs, then

says that the transformed vector can be split into two parts

(two groups of components): one of maximal randomness

and one of minimal one (nearly deterministic). The

polarization terminology comes from this antagonism. We

will see below a specific example. But a remarkable point is

that the separation procedure as well as the algorithm that

reconstructs the original vector from the purely random

components have low complexities (nearly linear). On the

other hand, it is still an open problem to characterize

mathematically if a given component belongs to the random

or deterministic part. But there exist tractable algorithms to

figure this out accurately.

III. EXISTING SCHEME

The fast Fourier transform (FFT) is one of the most

important algorithms in the field of digital signal processing.

It is used to calculate the discrete Fourier transform (DFT)

efficiently. In order to meet the high performance and

realtime requirements of modern applications, hardware

designers have always tried to implement efficient

architectures for the computation of the FFT. In this context,

pipelined hardware architectures [1]–[24] are widely used,

because they provide high throughputs and low latencies

suitable for real time, as well as a reasonably low area and

power consumption. There are two main types of pipelined

architectures: feedback (FB) and feedforward (FF).

On the one hand, feedback architectures [1]–[14] are

characterized by their feedback loops, i.e., some outputs of

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 181

the butterflies are fed back to the memories at the same stage.

Feedback architectures can be divided into Single-path Delay

Feedback (SDF) [1]–[6], which process a continuous flow of

one sample per clock cycle, and Multi-path Delay Feedback

(MDF) or parallel feedback [7]– [14], which process several

samples in parallel. On the other hand, feedforward

architectures [4], [5], [15]–[19], also known as Multi-path

Delay Commutator (MDC) [4], do not have feedback loops

and each stage passes the processed data to the next stage.

These architectures can also process several samples in

parallel.

In current real-time applications, the FFT has to be

calculated at very high throughput rates, even in the range of

GSamples/s. These high-performance requirements appear in

applications such as Orthogonal Frequency Division

Multiplexing (OFDM) [9]–[12], [22] and Ultra Wideband

(UWB) [10]– [13]. In this context two main challenges can

be distinguished. The first one is to calculate the FFT of

multiple independent data sequences [22], [23]. In this case,

all the FFT processors can share the rotation memory in order

to reduce the hardware [22]. Designs that manage a variable

number of sequences can also be obtained [23].

The second challenge is to calculate the FFT when

several samples of the same sequence are received in parallel.

This must be done when the required throughput is higher

than the clock frequency of the device. In this case it is

necessary to resort to FFT architectures that can manage

several samples in parallel. As a result, parallel feedback

architectures, which had not been considered for several

decades, have become very popular in the last few years [8]–

[14].

Conversely, not very much attention has been paid

to feedforward (MDC) architectures. This paradoxical fact,

however, has a simple explanation. Originally, SDF and

MDC architectures were proposed for radix-2 [2], [17] and

radix-4 [3], [17]. Some years later, radix- 2 2 was presented

for the SDF FFT [4] as an improvement on radix-2 and radix-

4. Next, radix-2 3 and radix-2 4 , which enable certain

complex multipliers to be simplified, were also presented for

the SDF FFT. An explanation of radix-2 k SDF architectures

can be found in [6]. Finally, the current need for high

throughput has been meet by the MDF, which includes

multiple interconnected SDF paths in parallel. However,

radix- 2 k had not been considered for feedforward

architectures until the first radix-2 2 feedforward FFT

architectures were introduced a few years ago [24].

Given a 2N point sequence, x(n), and having taken

the FFT of x(2n)+jx(2n+1) for

n=0,1,...,N-1, we can now compute:

 Given FFT(x(2n)+jx(2n+1)) = A(k)+jF(k),

let X(k) = R(k) + jI(k),

let c(k) = cos(pi*k/N),

let s(k) = sin(pi*k/N),

 2R(k) = A(k)+A(N-k) + c(k)(F(k)+F(N-k)) - s(k)(A(k)-

A(N-k))

 2I(k) = F(k)-F(N-k) - s(k)(F(k)+F(N-k)) - c(k)(A(k)-A(N-

k))

This will give us X(k). Notice what happens when we let

k'=N-k (k'-> k for convenience):

 2R(N-k) = A(k)+A(N-k) - c(k)(F(k)+F(N-k)) + s(k)(A(k)-

A(N-k)) (1)

 2I(N-k) = -F(k)+F(N-k) - s(k)(F(k)+F(N-k)) - c(k)(A(k)-

A(N-k)) (2) because c(N-k) = -c(k) and s(N-k) = s(k).

Since the data needed to compute X(k) is the same

as the data needed to compute X(N-k), we decided to

compute them simultaneously during each iteration of the

conversion stage loop. So the algorithm does the conversion

in k, N-k pairs (except for the mid-point).

In order to calculate the inverse, we realize that we

have four unknowns and four equations. Thus it is a simple

matter to derive:

 2A(k) = R(k)+R(N-k) - s(k)(R(k)-R(N-k)) - c(k)(I(k)+I(N-

k))

 2F(k) = I(k)-I(N-k) + c(k)(R(k)-R(N-k)) - s(k)(I(k)+I(N-k))

(3) and

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 182

 2A(N-k) = R(k)+R(N-k) + s(k)(R(k)-R(N-k)) +

c(k)(I(k)+I(N-k)) (4)

 2F(N-k) = -I(k)+I(N-k) + c(k)(R(k)-R(N-k)) -

s(k)(I(k)+I(N-k)) (5)

We can, therefore, calculate A(k)+jF(k) from X(k), run the

inverse FFT and regain x(n).

IV. PROPOSING SCHEME

Figure 1: 8 bit DCT configuration

Discrete cosine transform (DCT) expresses a finite

sequence of data points in terms of a sum of cosine functions

oscillating at different frequencies. DCTs are important to

numerous applications in science and engineering, from loss

compression of audio and images to spectral methods for the

numerical solution of partial differential equations. The use

of cosine rather than sine functions is critical in these

applications: for compression, it turns out that cosine

functions are much more efficient (as described below, fewer

functions are needed to approximate a typical signal),

whereas for differential equations the cosines express a

particular choice of boundary conditions.

In particular, a DCT is a Fourier-related transform

similar to the discrete Fourier transform (DFT), but using

only real numbers. DCTs are equivalent to DFTs of roughly

twice the length, operating on real data with even symmetry

(since the Fourier transform of a real and even function is

real and even), where in some variants the input and/or

output data are shifted by half a sample. There are eight

standard DCT variants, of which four are common. The most

common variant of discrete cosine transform is the type-II

DCT, which is often called simply "the DCT", its inverse, the

type-III DCT, is correspondingly often called simply "the

inverse DCT" or "the IDCT".

 Two related transforms are the discrete sine

transforms (DST), which is equivalent to a DFT of real and

odd functions, and the modified discrete cosine transforms

(MDCT), which is based on a DCT of overlapping data. Like

any Fourier-related transform, discrete cosine transforms

(DCTs) express a function or a signal in terms of a sum of

sinusoids with different frequencies and amplitudes. Like the

discrete Fourier transforms (DFT), a DCT operates on a

function at a finite number of discrete data points. The

obvious distinction between a DCT and a DFT is that the

former uses only cosine functions, while the latter uses both

cosines and sines (in the form of complex exponentials).

However, this visible difference is merely a consequence of a

deeper distinction: a DCT implies different boundary

conditions than the DFT or other related transforms. The

Fourier-related transforms that operate on a function over a

finite domain, such as the DFT or DCT or a Fourier series,

can be thought of as implicitly defining an extension of that

function outside the domain. That is, once you write a

function as a sum of sinusoids, you can evaluate that sum at

any , even for where the original was not specified. The DFT,

like the Fourier series, implies a periodic extension of the

original function. A DCT, like a cosine transform, implies an

even extension of the original function. DCT, like a cosine

transform, implies an even extension of the original function.

Illustration of the implicit even/odd extensions of DCT input

data, for N=11 data points (red dots), for the four most

common types of DCT (types I-IV). However, because DCTs

operate on finite, discrete sequences, two issues arise that do

not apply for the continuous cosine transform.

Before starting hardware assembling, we use

software application to simulate the algorithm. The purpose

of using software application for simulation, it is to verify the

correctness of the logic function. Skipping this step will

result in frustration in finding errors during hardware

assembling. It is extremely difficult to locate the error during

the VLSI design. The following is the software application

using Java language to manipulate the DCT algorithm.

The main function of the program, at first to create a

2-D arrays for substitute the 2-D matrix in the algorithm.

The four for loops is for implement the 2 summations in the

algorithm. The method shown above performs a DCT

algorithm on the 2-D array. Use the output of the array, and

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 183

then perform transposition. The array after transposition will

be use for DCT algorithm for row transformation. The

output after this operation is the final result after the data

compression. However, the transposition method is not

complete due insufficient knowledge of how transposition

works in the DCT algorithm. In the coming semester, fully

understand the purpose of transposition is the first priority.

After all the key components figure out, the entire VLSI

architecture design will be design in details.

The following is the matrix after the DCT algorithm

The following matrix is the output after IDCT algorithm

By compare the input matrix and the IDCT matrix,

it is confident that the algorithm and software is correct.

Because the IDCT matrix is suppose to be the same as the

input matrix. IDCT is to use DCT matrix to go back to the

original matrix. This way is to double-check the simulation

process. However, this software simulation does not include

transposition part. According to the output result acquired

from Sachidanandan [52]. The simulation includes DCT and

transposition. The following is the output result in the paper,

which it is the result we are expecting to have.

The coming semester will insert the transposition into the

Java code and hopefully the output will be the same as the

matrix above.

V. RESULTS

Figure 2: Simulation Result for 32 Bit Data.

Figure 2 results in DCT based 32bit polar codes were

developed for encoding data bits based on discrete cosine

transform algorithm which possess on both real and complex

numbers.

VI. CONCLUSION

A good example makes the advantage apparent: no

matter what value the concurrent number M design is able to

finish encoding all words before its counterpart (overlapped

design) outputs its first decoded word. Another point is the

IGC, which is inspired by the DCT processor proposed and

can be generated with a nice and easy recurrence

relationship, is able to output all control bits required by the

multiplexers on the fly. Therefore, no additional clock cycles

are needed for computation of , which preserves the

advantage of short latency. To the best knowledge of the

authors, this is the first detailed design of similar module

with such features.

REFERENCES

[1] E. Abbe, “Extracting randomness and dependencies via a

matrix polarization,” arXiv:1102.1247v1, 2011.

[2] E. Abbe and E. Telatar, “Polar codes for the m-user MAC

and matroids,” arXiv:1002.0777v2, 2010.

[3] E. Arıkan, “Channel polarization: A method for

constructing capacityachieving codes for symmetric binary-

input memoryless channels,” IEEE Trans. Inform. Theory,

vol. 55, pp. 3051–3073, 2009.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 3, Issue 8, August 2016

 184

[4] E. Arıkan, “Source polarization,” arXiv:1001.3087v2,

2010.

[5] E. Arıkan and E. Telatar, “On the rate of channel

polarization,” in Proc. IEEE Symp. Inform. Theory, Seoul,

South Korea, 2009, pp. 1493–1495.

[6] D. Burshtein and A. Strugatski, “Polar write once

memory codes,” arXiv:1207.0782v2, 2012.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,

Introduction to Algorithms, 2nd ed. Cambridge,

Massachusetts: The MIT Press, 2001.

[8] T.M. Cover and J.A. Thomas, Elements of Information

Theory, 2nd ed. New York: John Wiley, 2006.

[9] R.G. Gallager, Information Theory and Reliable

Communications. New York: John Wiley, 1968.

[10] A. Goli, S.H. Hassani, and R. Urbanke, “Universal

bounds on the scaling behavior of polar codes,” in Proc.

IEEE Symp. Inform. Theory, Cambridge, Massachusetts,

2012, pp. 1957–1961.

[11] V. Guruswami and P. Xia, “Polar codes: Speed of

polarization and polynomial gap to capacity,” http://eccc.hpi-

web.de/report/2013/050/, 2013.

[12] S.H. Hassani, R. Mori, T. Tanaka, and R. Urbanke,

“Rate-dependent analysis of the asymptotic behavior of

channel polarization,” arXiv:1110. 0194v2, 2011.

[13] S.B. Korada, “Polar codes for channel and source

coding,” Ph.D. dissertation, EcolePolytechnique Fed´ erale

de Lausanne, 2009.

[14] S.B. Korada, E. S¸ as¸oglu, and R. Urbanke, “Polar

codes: Characterization ˘ of exponent, bounds, and

constructions,” IEEE Trans. Inform. Theory , vol. 56, pp.

6253–6264, 2010.

[15] B.M. Kurkoski and H. Yagi, “Quantization of binary-

input discrete memoryless channels with applications to

LDPC decoding,” arXiv:11107. 5637v1, 2011.

[16] H. Mahdavifar and A. Vardy, “Achieving the secrecy

capacity of wiretap channels using polar codes,” IEEE Trans.

Inform. Theory, vol. 57, pp. 6428–6443, 2011.

[17] R. Mori, “Properties and construction of polar codes,”

Master’s thesis, Kyoto University, arXiv:1002.3521, 2010.

[18] R. Mori and T. Tanaka, “Performance and construction

of polar codes on symmetric binary-input memoryless

channels,” in Proc. IEEE Symp. Inform. Theory, Seoul,

South Korea, 2009, pp. 1496–1500.

[19] R. Pedarsani, S.H. Hassani, I. Tal, and E. Telatar, “On

the construction of polar codes,” in Proc. IEEE Symp.

Inform. Theory, Saint Petersburg, Russia, 2011, pp. 11–15.

[20] T. Richardson and R. Urbanke, Modern Coding Theory.

Cambridge, UK: Cambridge University Press, 2008.

[21] E. S¸ as¸oglu, “Polarization in the presence of memory,”

in ˘ Proc. IEEE Symp. Inform. Theory, Saint Petersburg,

Russia, 2011, pp. 189–193.

[22] E. S¸ as¸oglu, E. Telatar, and E. Arıkan, “Polarization

for arbitrary discrete ˘ memoryless channels,”

arXiv:0908.0302v1, 2009.

[23] E. S¸ as¸oglu, E. Telatar, and E. Yeh, “Polar codes for

the two-user multiple- ˘ access channel,” arXiv:1006.4255v1,

2010.

[24] I. Tal and A.Vardy, “List decoding of polar codes,” in

Proc. IEEE Symp. Inform. Theory, Saint Petersburg, Russia,

2011, pp. 1–5.

