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Abstract: - In this paper, we propose a proof of concept for the automatic planning of personalized radiotherapy for brain tumors. 

A computational model of brain tumor growth is combined with an exponential cell survival model to describe the effect of 

radiotherapy. The model is personalized with the magnetic resonance images (MRIs) of a given patient. It takes into account the 

uncertainty in the model parameters, together with the uncertainty in the MRI segmentations. The computed probability 

distribution over tumor cell densities, together with the cell survival model, is used to define the prescription dose distribution, 

which is the basis for subsequent Intensity Modulated Radiation Therapy (IMRT) planning. Depending on the clinical data 

available first, we include the uncertainty in the segmentation process. We show how our method allows the user to compute a 

patient specific radiotherapy planning conformal to the tumor growth. The presented approach and its proof of concept may help 

in the future to better target the tumor and spare organs at risk. 

 

I. INTRODUCTION 

 

Brain tumor is a mass or collection of abnormal cells in 

brain. Brain tumor arises due to abnormal growth of cells 

that have proliferated in an uncontrolled manner. When 

normal cells grow old and die or get damaged cell death. 

Some mutation occur in cellular DNA that give rise to more 

cells that all contain abnormal DNA. The accumulating 

cells from the mass is called growth or tumor. A brain 

tumor is an abnormal growth of tissue in the brain or 

central spine that can disrupt proper brain function. The 

cause of most brain tumors is unknown, it may occur due to 

radiation like ultraviolet, mobile phones, genetic mutation, 

heriditatory reasons but the evidence is not clear several 

research studies have claimed that diseases caused due to 

impaired gene function like neurofibromatosis and Li-

Fraumeni syndrome also put at high risk of brain tumors. 

Although brain tumors can occur at any age, elderly people 

are known to be at a high risk of suffering from this 

disease.  In the year 2006 at TATA Memorial Hospital in 

Mumbai, India 372 people were diagnosed with Brain and 

Central Nervous System Tumors, out of which 250 (67%) 

were males and 122 (33%) were females.  A total of 

1,529,560 new cancer cases and 569,490 deaths from 

cancer are projected to occur in the United States in 2010. 

Overall cancer incidence rates decreased in the most recent 

time period in both men (1.3% per year from 2000 to 2006) 

and women (0.5% per year from 1998 to 2006), largely due 

to decreases in the 3 major cancer sites in men (lung, 

prostate, and colon and rectum [colorectum]) and 2 major 

cancer sites in women (breast and colorectum). The 

reduction in the overall cancer death rates translates to the 

avoidance of approximately 767,000 deaths from cancer 

over the 16-year period The most effective and common tool 

for diagnosing a brain tumor is the use of a Magnetic 

Resonance Imaging (MRI) scan, although Computed 

Tomography (CT or CAT) scans are also used. A Positron 

Emission Tomography (PET) scan is used at first to find out 

more about a tumor while a patient is receiving treatment or 

if the tumor comes back after treatment. A variety of 

therapies are used to treat brain tumors. The type of 

treatment recommended depends on the size and type of the 

tumor, its growth rate, brain location, and the general health 

of the patient. Treatment options include surgery, radiation 

therapy, chemotherapy, targeted biological agents, or a 

combination of these. Surgical resection is generally the first 

treatment recommendation to reduce pressure in the brain 

rapidly. In the past two decades, researchers have developed 

new techniques of delivering radiation that target the brain 

tumor while protecting nearby healthy tissues. These 

treatments include brachytherapy, Intensity Modulated 

Radiation Therapy (IMRT) and radiosurgery. 

Radiation therapy may be advised for tumors that are 

sensitive to this treatment. Conventional radiation therapy 

uses external beams of x-rays, gamma rays or protons aimed 

at the tumor to kill cancer cells and shrink brain tumors. The 
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therapy is usually given over a period of several weeks. 

Whole brain radiation therapy is an option in the case of 

multiple tumors or tumors that cannot be easily targeted 

with focal treatment. Types of radiation therapy include: 

An advanced mode of high-precision radiotherapy that 

utilizes computer-controlled x-ray accelerators to deliver 

precise radiation doses to a malignant tumor or specific 

areas within the tumor. The radiation dose is designed to 

conform to the three-dimensional (3-D) shape of the tumor 

by modulating or controlling the intensity of the radiation 

beam to focus a higher radiation dose to the tumor while 

minimizing radiation exposure to healthy cells. A highly 

precise form of radiation therapy that directs narrow beams 

of radiation to the tumor from different angles. For this 

procedure, the patient may wear a rigid head frame. 

Computed Tomography (CT) or Magnetic Resonance 

Imaging (MRI) help the doctor identify the tumor's exact 

location and a computer helps the doctor regulate the dose 

of radiation. Stereotactic radiotherapy is similar physically 

to radiosurgery but involves fractionation (multiple 

treatments). This modality would be recommended for 

tumors within or close to critical structures in the brain that 

cannot tolerate a large single dose of radiation or for larger 

tumors.  This paper, propose three principledapproaches to 

compute the prescription dose. First, weminimize the 

surviving fraction of tumor cells after irradiationfor the 

most probable tumor cell density. Second, we minimizethe 

expected survival fraction tumor cells after 

irradiation.Third, we present an approach to correct the 

prescription doseto take into account the presence of 

adjacent organs at risk.The computed probability 

distribution over tumor cell densities, together with the cell 

survival model, is used to define the prescriptiondose 

distribution, which is the basis forsubsequent Intensity 

Modulated Radiation Therapy (IMRT) planning.Depending 

on the clinical data available first, we include the 

uncertainty in the segmentation process. We show how our 

method allows the user to compute a patient specific 

radiotherapy planning conformal to the tumor growth. The 

presented approach and its proof of concept may help in the 

future to better target the tumor and spare organs at risk. 

 

II-RELATED WORK 

 

In [1], K. Farahani et al., proposed the new set-up and 

results of the Multimodal Brain Tumor Image 

Segmentation Benchmark (BRATS) organized in 

conjunction with the MICCAI 2012 and 2013 conferences. 

Quantitative evaluations revealed considerable 

disagreement between the human raters in segmenting 

various tumor sub-regions (Dice scores in the range 74%–

85%), illustrating the difficulty of this task. We found that 

different algorithms worked best for different sub-regions 

(reaching performance comparable to human inter-rater 

variability), but that no single algorithm ranked in the top for 

all sub-regions simultaneously.  

J. Murray et al.,[2] proposed a mathematical model to 

describe the growth and invasion of glioma cells throughout 

an anatomically accurate virtual human brain as well as the 

effects of operation on these lesions. 

Olivier Saut et al.,[4] construct a clinical-scale model of 

GBM whose predictions uncover a new pattern of 

recurrence in 11/70 bevacizumab-treated patients. The 

findings support an exception to the Folkman hypothesis: 

GBM grows in the absence of angiogenesis by a cycle of 

proliferation and brain invasion that expands necrosis. 

Furthermore, necrosis is positively correlated with brain 

invasion in 26 newly-diagnosed GBM. 

J. Unkelbach, et al.,[5]propose to analyze the model with 

respect to implications for target volume definition and 

identifies its most critical components. A retrospective study 

involving 10 glioblastoma patients treated at our institution 

has been performed. To illustrate the main findings of the 

study, a detailed case study is presented for a glioblastoma 

located close to the falx.  

H. Delingette et al.,[6] propose a novel method for 

estimating the full extent of the tumor infiltration starting 

from its visible mass in the patients‟ MR images. This 

estimation problem is a time independent problem where we 

do not have information about the temporal evolution of the 

pathology nor its initial conditions. Based on the reaction-

diffusion models widely used in the literature, we derive a 

method to solve this extrapolation problem. Later, we use 

this formulation to tailor new tumor specific variable 

irradiation margins. 

 

III-POPOSED SYSTEM 

 

This section elucidates the system design and methodology 

which concerns its ultimate design and the features of 

proposed system. The overall system design of the proposed 

method is illustrated in Figure.1. The proposed work start 

with the acquisition of brain MR images of abnormal cases. 

The preprocessing techniques will help to improve the brain 

image quality and adaptive tumor segmentation technique is 

useful to segment the brain tumor portion separately. Tumor 

growth model generation is based on the reaction-diffusion 

method. 

 
Fig 1.Proposed block 
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A. Pre-processing techniques 

Brain MRIs are degraded during the process of imaging 

due to image transmission and image digitization by noise 

and existence of extra-cranial tissues in MRI such as Skull, 

bone, skin, air, muscles, and fat. Pre-processing is a 

procedure to eliminate these noises and extra-cranial tissues 

from the Brain MRI and alters the heterogeneous image 

into homogeneous image. Though there are lots of filters 

which have been used for filtering the images, some of 

them corrupt the miniature details of the image and some 

conventional filters will process the image incessantly 

(smoothing) and consequently harden the edges of the 

image. Hence, the proposed pre-processing steps namely 

De-noising and skull stripping provide better Image clarity. 

 

B. Contrast adjustment 

Contrast adjustment remaps image intensity values to the 

full display range of the data type. An image with good 

contrast has sharp differences between black and white. 

The first step is to calculate a contrast correction factor 

which is given by the following formula: 

 
In order for the algorithm to function correctly the value for 

the contrast correction factor (F) needs to be stored as a 

floating point number and not as an integer. The value C in 

the formula denotes the desired level of contrast. 

The next step is to perform the actual contrast adjustment 

itself. The following formula shows the adjustment in 

contrast being made to the red component of a color: 

 
This series and just ensures that the new values of red, 

green and blue are within the valid range of 0 to 255. The 

value of contrast will be in the range of -255 to +255. 

Negative values will decrease the amount of contrast and, 

conversely, positive values will increase the amount of 

contrast. 

C. Segmentation  
The T1Gd abnormality, which is the active part of the 

tumor, and the larger T2-FLAIR abnormality, which is 

usually called the edema, were segmented by a clinician. In 

order to take into account the uncertainty in the 

segmentation, we propose to randomly modify the original 

clinician segmentations. The method is based on, where 

samples of such segmentations are generated from a high 

dimensional Gaussian process, as the zero crossing of a 

level function. The samples are efficiently produced on the 

regular grid using the separability and stationary properties 

of the squared exponential covariance function. The 

samples take into account the image intensity information 

using the signed geodesic distance as the mean of the 

Gaussian process. 

Segmentation samples for the T1Gd and T2-FLAIR 

abnormalities at the first and second time points are 

generated. Let S0 i denote the clinical segmentations for the 

T1Gd and T2- FLAIR abnormalities at the first and second 

time points, where the index i = 1,….,4 refers to the 4 

available images. Let    {  
 }
       

 denote sets of K 

plausible segmentations per modality and time point, where 

each   
  is a plausible sample from   

  , the ith clinician 

segmentation. The samples automatically respect the 

boundaries of the tumor progression such as the ventricles, 

because of the presence of large intensity gradients. The five 

presented samples per abnormality correspond to an average 

DICE of 87%, which is comparable to the inter-expert DICE 

measured in the BraTS Challenge for brain tumors 

delineation. Comparing the output of the forward tumor 

growth model with these plausible noisy segmentations 

allows to include the uncertainty of the original clinician 

segmentations. Note that other approaches could allow the 

handling of segmentation uncertainty. For instance, one 

could compare the output of the tumor growth model with 

probabilistic segmentation approaches which have been 

proposed for glioblastoma. 

D. Tumor Growth Model 
The tumor growth model is based on the reaction-diffusion 

equation, 
  

  
  (    )⏟                 (   )⏟        _ (1) 

 Diffusion     Logistic Proliferation 

     ⃗                                                                _ (2) 

Equation (1) describes the spatio-temporal evolution of the 

tumor cell density u, which infiltrates neighboring tissues 

with a diffusion tensor D, and proliferates with a net 

proliferation rate . Equation (2) enforces Neumann 

boundary conditions on the brain domain . Following, we 

define the diffusion tensor as D = dw I in the white matter, 

and D = dw/10 I in the gray matter, where I is the 3x3 

identity matrix. Below, we identify the scalar parameter dw 

with D. The solution of the reaction-diffusion equation (1) is 

a tumor cell density u computed over the whole brain 

domain. However, parts of the brain that glioblastomas 

usually do not invade were excluded from the tumor 

simulation such as the CSF or the cerebellum. In order to 

relate the tumor cell density u to the MRIs, the frontier of 

the visible abnormalities is assumed to correspond to a 

threshold value of the tumor cell density u. We note    the 

value of the tumor cell density u corresponding to the 

frontier of the T1Gd abnormality, and    the value 

corresponding to the frontier of the T2-FLAIR abnormality. 

The initialization of the tumor cell density u (t = t1, x) at the 

time of the first acquisition is of particular importance, as it 

impacts the rest of the simulation. In this work, the tumor 

tail extrapolation algorithm described. The method is based 

on the assumption that the solution of equation (1) at the 
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first time point has converged to its asymptotic, traveling 

wave type solution. Thereby, the tumor cell density is 

propagated outward (and inward), starting from the T1Gd 

segmentation, and drops approximately exponentially with 

distance. The steepness of the falloff, i.e. the distance at 

which the cell density drops by a factor 1/e is given by the 

invisibility index . By construction of the 

initialization, the T1Gd abnormality falls exactly on the 

threshold    of the tumor cell density at the first time point. 

The reaction-diffusion equation is solved using the Lattice 

Boltzmann Method which allows for easy parallelization 

and fast computations. On a 1mm x 1mm x 1mm resampled 

MRI, simulating 30 days of growth takes approximately 50 

seconds on a 2.3 GHz 50 core machine. Note that this 

model is an approximation of the complex growth of the 

disease. For instance, it could be extended in order to 

include mass effect, or a more detailed description of the 

disease. In other works, this model has been extended to 

model different types of therapy such as resection, 

chemotherapy, or anti-angiogenic therapy. The common 

approach taken in these works is to add a death term to the 

reaction-diffusion equation, which allows to model the 

shrinkage of the tumor due to the therapy. The personalized 

parameters of a reaction-diffusion model were good 

predictors of certain mutations status of the patient. 

 

IV - SIMULATION RESULTS 

 

The Brain MRI images area collected from the 

„prostatemrimage‟ database and the different stages of the 

MRI images of a single patient is collected and tested in 

this work. The following figure 1 and represents the test 

images sample images. Where the figure 1 is starting stages 

of the brain tumor and the figure 2 represents the prostate 

stage of the brain tumor. 

 
Figure 1 sample test image with initial brain tumor 

 

 
Figure 2 sample test image with prostate brain tumor 

 

The following figure represents the 8 stages of the brain 

tumor MRI images. 

 

 
Figure 3 Eight stages of brain tumor 

 

The preprocessing and segmentation is taken for the 

tumor region and the following figure is showing the 

eight different stages of the brain tumor images, the tumor 

regions are represented with the help of binary images. 

The tumor image is indicated by the white pixels and the 

background pixels are represented as black. 

 
Figure 4 segmented tumor ROI of brain tumor 

 

The labeling of the segmented region is most helpful for 

the radiotherapy implementation and the dosage can be 

planned based in the labeling on the original images.  
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Figure 5 labeled tumor ROI of brain tumor 

 

The area of the tumor region is calculated based o the 

morphological operations and the pixels count is the actual 

area of the tumor ROI. The area measurement are 

converted form the pixel units into millimeter units. And 

the following figure is showing the Area representation of 

the different stages of the Brain tumor ROI. 

 

 
Figure 4 area representation of brain tumor 

 

Day Area in (mm^2) Growth model 

Day1 325.54 Initial 

Day2 240.80 decrease 

Day3 320.61 increase 

Day4 333.34 increase 

Day5 244.38 decrease 

Day6 463.95 increase 

Day7 735.41 increase 

Day8 672.90 decrease 

 

(i) Performance Evaluation 

This section delivers the performance of the grade 

classification work where the proposed work has classified 

the test samples with two classifiers called SVM and KNN 

classifiers 

 

(a) Accuracy 

Accuracy is the degree to which the result of a 

measurement, calculation, or specification conforms to the 

correct value or a standard 

 

Accuracy =
     

           
 

 

The proposed work is achieving the maximum accuracy 

level as 98.91% and also obtaining the maximum 

recognition rate for this deep learning based work. 

Performance measure procedure was done by comparing the 

segmentation results to the reference image. There are four 

values resulted from the validation procedure, True Positive 

(TP), False Positive (FP), True Negative (TN) and False 

Negative (FN). True Positives is a number of images 

correctly detected as normal, False Positive is a number of 

images incorrectly detected True Negatives is a number of 

images correctly detected as tumor image and False 

Negative (FN) is a number of image incorrectly detected as 

tumor. 

 

Table.1: Target vs predicted 

Target vs 

Predicted 

Normal pixel 

(Predicted) 

Tumorous pixel 

(Predicted) 

Normal pixel 

(Target) 

True positive 

(TP) 

False positive 

(FP) 

Tumorous 

pixel 

(Target) 

False Negative 

(FN) 

True Negative 

(TN) 

 

For evaluation purpose, all the parameters are determined 

for each image in the dataset. Sensitivity, Specificity and 

Predictivity, Recall, True Positive Rate, False Positive Rate 

are used as performance measures. 

 

 
Fig 5. Accuracy graph 
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(b) Sensitivity 

Sensitivity is the probability that a test result will be 

positive when the selected pixel is normal. It is defined as 

the ratio between True positive (TP) and addition of True 

positive (TP) and False negative (FN). 

Sensitivity =
  

     
 

 

 
Fig 6. Sensitivity graph 

 

 

V. CONCLUSION 

 

The proposed work is delivering the brain tumor growth 

model generation based on the tumor intensity based 

approach. The first step in this work is based on the 

tumor region segmentation. The segmented brain tumor 

region is undergone for the area measurement. The area 

measurement is done with the help of morphological 

operation and the successive images are undergone for 

the same fashion of area measurement. The brain tumor 

growth model is predicted for the sequence of MRI 

images. This work is accurately targeting the tumor 

region and it will be helpful for the further growth 

model. The proposed work is developed in MATLAB 

environment. 
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