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Abstract: - For the classification of hyper spectral images (HSIs), this work presents a novel framework for an automatic system to 

segment the hyper spectral images. In the HSI, each pixel can be regarded as a shape-adaptive region, which consists of a number 

of spatial neighboring pixels with very similar spectral characteristics. First, the proposed methodology adopts an over 

segmentation algorithm to cluster the HSI into many super pixels. Then, feature extraction is employed for the utilization of the 

spectral information, as well as spatial information, within and among super pixels. Finally, the hybridized machine learning 

algorithm is incorporated for the hyper spectral classification. This work introduces particle swarm optimization based support 

vector machine classifier for the classification. The Pavia database images are collected and simulated on MATLAB R2014a and 

the exposed results are showing the effectiveness of the proposed methodology. 

 

 

I. INTRODUCTION 

 

Hyper spectral imaging, like other spectral imaging, 

collects and processes information from across the 

electromagnetic spectrum. The goal of hyper spectral 

imaging is to obtain the spectrum for each pixel in the 

image of a scene, with the purpose of finding objects, 

identifying materials, or detecting processes. Nowadays 

there are two branches of spectral imaging Push broom 

scanner, which read in an image over time and Snapshot 

hyper spectral imaging which generates an image in an 

instance. 

 
Figure 1.1 Two-dimensional projection of a hyper 

spectral cube 

 

Whereas the human eye sees color of visible light in 

mostly three bands (red, green, and blue), spectral 

imaging divides the spectrum into many more bands. This 

technique of dividing images into bands can be extended 

beyond the visible. In hyperspectral imaging, the recorded 

spectra have fine wavelength resolution and cover a wide 

range of wavelengths. 

Engineers build hyperspectral sensors and processing 

systems for applications in astronomy, agriculture, 

biomedical imaging, geosciences, physics, and surveillance. 

Hyperspectral sensors look at objects using a vast portion of 

the electromagnetic spectrum. Certain objects leave unique 

'fingerprints' in the electromagnetic spectrum. Known as 

spectral signatures, these 'fingerprints' enable identification 

of the materials that make up a scanned object. For example, 

a spectral signature for oil helps geologists find new oil 

fields. Figuratively speaking, hyperspectral sensors collect 

information as a set of 'images'. Each image represents a 

narrow wavelength range of the electromagnetic spectrum, 

also known as a spectral band. These 'images' are combined 

to form a three-dimensional (x,y,λ) hyperspectral data 

cube for processing and analysis, where x and y represent 

two spatial dimensions of the scene, and λ represents the 

spectral dimension (comprising a range of wavelengths).  

Technically speaking, there are four ways for sensors to 

sample the hyperspectral cube: Spatial scanning, spectral 

scanning, snapshot imaging and spatio-spectral scanning.  

Hyperspectral cubes are generated from airborne sensors 

like the NASA's Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS), or from satellites like NASA's EO-

1 with its hyperspectral instrument Hyperion. However, for 

many development and validation studies, handheld sensors 

are used. The precision of these sensors is typically 

measured in spectral resolution, which is the width of each 

band of the spectrum that is captured. If the scanner detects 

a large number of fairly narrow frequency bands, it is 
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possible to identify objects even if they are only captured in 

a handful of pixels. However, spatial resolution is a factor 

in addition to spectral resolution. If the pixels are too large, 

then multiple objects are captured in the same pixel and 

become difficult to identify. If the pixels are too small, then 

the energy captured by each sensor cell is low, and the 

decreased signal-to-noise ratio reduces the reliability of 

measured features. The acquisition and processing of 

hyperspectral images is also referred to as imaging 

spectroscopy or, with reference to the hyperspectral cube, 

as 3D spectroscopy. For feature dimension reduction, 

another approach is to perform band selection which aims 

to select a group of bands from the original high-

dimensional feature space. The correlation between each 

two spectral bands is measured by mutual information, and 

the representative bands are selected by minimizing the 

distance between the selected bands and the estimated 

reference map. Then the representative bands are selected 

by using a clustering-based method in which the bands with 

the largest similarity to other bands are chosen. For 

hyperspectral image classifiers, K-Nearest Neighbor 

classifier (KNN) and Support Vector Machine (SVM) have 

been employed. 

 

II - RELATED WORK 

 

In [1], J. M. Bioucas-Dias.et al., proposed segmentation 

approach is experimentally evaluated using both simulated 

and real hyperspectral data sets, exhibiting state-of-the-art 

performance when compared with recently introduced 

hyperspectral image classification methods. The integration 

of subspace projection methods with the MLR algorithm, 

combined with the use of spatial–contextual information, 

represents an innovative contribution in the literature. This 

approach is shown to provide accurate characterization of 

hyperspectral imagery in both the spectral and the spatial 

domain. L. Bruzzone, et al., [3] propose a theoretical 

discussion and experimental analysis aimed at 

understanding and assessing the potentialities of SVM 

classifiers in hyper dimensional feature spaces. Then, we 

assess the effectiveness of SVMs with respect to 

conventional feature-reduction-based approaches and their 

performances in hyper subspaces of various 

dimensionalities. To sustain such an analysis, the 

performances of SVMs are compared with those of two 

other nonparametric classifiers (i.e., radial basis function 

neural networks and the K-nearest neighbor classifier). 

M. Fauvel, et al., [4] proposed scheme is a spectral-spatial 

technique based on wavelet transforms and mathematical 

morphology. The original contribution of this paper is that 

the extended morphological profile (EMP) is created from 

the features extracted by wavelets, which has proven to be 

better or comparable to other techniques for dimensionality 

reduction of hyperspectral data. X. Huang et al.,[5] 

introduce a novel feature extraction algorithm named sparse 

transfer manifold embedding (STME), which can effectively 

and efficiently encode the discriminative information from 

limited training data and the sample distribution information 

from unlimited test data to find a low-dimensional feature 

embedding by a sparse transformation. Technically 

speaking, STME is particularly designed for hyperspectral 

target detection by introducing sparse and transfer 

constraints. 

 

III - PROPOSD SYSTEM 

 

 
Fig 3.1 proposed block 

 

A. SUPER PIXEL SEGMENTATION 

Superpixels provide a convenient primitive from which to 

compute local image features. They capture redundancy in 

the image and greatly reduce the complexity of subsequent 

image processing tasks. They have proved increasingly 

useful for applications such as depth estimation, image 

segmentation, skeletonization, body model estimation, and 

object localization. For Superpixels to be useful they must 

be fast, easy to use, and produce high quality segmentations. 

Unfortunately, most state-of-the-art superpixel methods do 

not meet all these requirements.  

 

B. SIMPLE LINEAR ITEARATIVE CLUSTERING 

(SLIC) 

This approach generates superpixels by clustering pixels 

based on their color similarity and proximity in the image 

plane. This is done in the five-dimensional         space, 

where [lab] is the pixel color vector in CIELAB color space, 

which is widely considered as perceptually uniform for 

small color distances, and xy is the pixel position. While the 

maximum possible distance between two colors in the 

CIELAB space (assuming sRGB input images) is limited, 

the spatial distance in the xy plane depends on the image 

size. It is not possible to simply use the Euclidean distance 

in this 5D space without normalizing the spatial distances. In 

order to cluster pixels in this 5D space, we therefore 

introduce a new distance measure that considers superpixel 

size. Using it, we enforce color similarity as well as pixel 
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proximity in this 5D space such that the expected cluster 

sizes and their spatial extent are approximately equal. 

 

(a) Distance measure 

Our algorithm takes as input a desired number of 

approximately equally-sized superpixels K. For an image 

with N pixels, the approximate size of each superpixel is 

therefore N/K pixels. For roughly equally sized superpixels 

there would be a superpixel center at every grid interval  

  √  ⁄ . 

At the onset of our algorithm, we choose K superpixel 

cluster centers                    
 with           at 

regular grid intervals S. Since the spatial extent of any 

superpixel is approximately S2 (the approximate area of a 

superpixel), we can safely assume that pixels that are 

associated with this cluster center lie within a       area 

around the superpixel center on the xy plane. This becomes 

the search area for the pixels nearest to each cluster center. 

Euclidean distances in CIELAB color space are 

perceptually meaningful for small distances (m in Eq. 1 ). If 

spatial pixel distances exceed this perceptual color distance 

limit, then they begin to outweigh pixel color similarities 

(resulting in superpixels that do not respect region 

boundaries, only proximity in the image plane). Therefore, 

instead of using a simple Euclidean norm in the 5D space, 

we use a distance measure Ds defined as follows: 

     √       
         

         
  

    √       
         

  

        
 

 
    

 

Where    is the sum of the lab distance and the xy plane 

distance normalized by the grid interval S. A variable m is 

introduced in Ds allowing us to control the compactness of 

a superpixel. The greater the value of m, the more spatial 

proximity is emphasized and the more compact the cluster. 

This value can be in the range [1; 20]. We choose m = 10 

for all the results in this paper. This roughly matches the 

empirical maximum perceptually meaningful CIELAB 

distance and offers a good balance between color similarity 

and spatial proximity. 

 

(b) Algorithm 

The simple linear iterative clustering algorithm is 

summarized in Algorithm 1. We begin by sampling K 

regularly spaced cluster centers and moving them to seed 

locations corresponding to the lowest gradient position in a 

    neighborhood. This is done to avoid placing them at an 

edge and to reduce the chances of choosing a noisy pixel. 

Image gradients are computed as: 

       ‖                 ‖ 

 ‖                 ‖  

 

Where       the lab is vector corresponding to the pixel at 

position      , and ‖ ‖ is the L2 norm. This takes into 

account both color and intensity information. Each pixel in 

the image is associated with the nearest cluster center whose 

search area overlaps this pixel. After all the pixels are 

associated with the nearest cluster center, a new center is 

computed as the average       vector of all the pixels 

belonging to the cluster. We then iteratively repeat the 

process of associating pixels with the nearest cluster center 

and recomputing the cluster center until convergence. 

 
At the end of this process, a few stray labels may remain, 

that is, a few pixels in the vicinity of a larger segment 

having the same label but not connected to it. While it is 

rare, this may arise despite the spatial proximity measure 

since our clustering does not explicitly enforce connectivity. 

Nevertheless, we enforce connectivity in the last step of our 

algorithm by relabeling disjoint segments with the labels of 

the largest neighboring cluster. This step is      complex 

and takes less than 10% of the total time required for 

segmenting an image. 

 

C. SPECTRAL FEATURE EXTRACTION 

Mean (or) Average filtering is a simple, intuitive and easy to 

implement method of smoothing images, i.e. reducing the 

amount of intensity variation between one pixel and the 

next. It is often used to reduce noise in images. 

The idea of mean filtering is simply to replace each pixel 

value in an image with the mean (`average') value of its 

neighbors, including itself. This has the effect of eliminating 

pixel values which are unrepresentative of their 

surroundings. Mean filtering is usually thought of as a 

convolution filter. Like other convolutions it is based around 

a kernel, which represents the shape and size of the 

neighborhood to be sampled when calculating the mean. 

Often a 3×3 square kernel is used, as shown in Figure 1, 

although larger kernels (e.g. 5×5 squares) can be used for 

more severe smoothing. (Note that a small kernel can be 
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applied more than once in order to produce a similar but 

not identical effect as a single pass with a large kernel.) 

 
Figure 3.2 3×3 averaging kernel often used in mean 

filtering 

 

D. SUPER PIXEL FEATURE EXTRACTION 

This section introduce how to utilize the superpixels to 

create three feature images, which separately reflect the 

spectral information and spatial information within and 

among superpixels. Then, three kernels are computed on 

the pixels from the feature images to exploit the spectral–

spatial information of superpixels. Each superpixel is a 

group of neighboring spectral pixels yzi , z = 1, . . . , Z, 

which can be transformed into a matrix YSP i . As 

described in Section II, spectral pixels representing the 

spectral information of superpixels in the HSI can be 

directly used as the spectral feature. All the spectral pixels 

in the HIS constitute the spectral feature image ISpec. To 

exploit the spatial information within each superpixel, a 

mean operation is first applied on the spectral pixels [y1 i , . 

. . , yZi ] within each superpixel YSP i , and then, the mean 

pixel yMeani is assigned to all pixels in each superpixel. 

Here, YSP i is still the superpixel, which consists of a 

number of spectral pixels. This operation is the same as 

mean filtering and can reduce the interferences (e.g., noise) 

in each superpixel. All the filtered superpixels can 

constitute a mean feature image IMean. Note that adopting 

other more powerful filtering approaches (e.g., guided 

filtering and nonlocal filtering) might enhance the 

performance but increase the computational cost.   

 

Weighted Average Filtering 

The weighted mean filtering has been applied widely as an 

advanced method compared with standard mean filtering. 

The weighted mean filtering performs spatial processing to 

determine which pixels in an image have been affected by 

impulse noise. The weighted mean filtering classifies pixels 

as noise by comparing each pixel in the image to its 

surrounding neighbor pixels. The size of the neighborhood 

is adjustable, as well as the threshold for the comparison. A 

pixel that is different from a majority of its neighbors, as 

well as being not structurally aligned with those pixels to 

which it is similar, is labeled as impulse noise. These noise 

pixels are then replaced by the median pixel value of the 

pixels in the neighborhood that have passed the noise 

labeling test. 

Purpose 

1). Remove impulse noise 

2). Smoothing of other noise 

3). Reduce distortion, like excessive thinning or thickening 

of object boundaries 

 

E. FEATURE SELECTION 

In machine learning and statistics, feature selection, also 

known as variable selection, attribute selection or variable 

subset selection, is the process of selecting a subset of 

relevant features (variables, predictors) for use in model 

construction. Feature selection techniques are used for three 

reasons: 

Simplification of models to make them easier to interpret by 

researchers/users, 

Shorter training times, 

Enhanced generalization by reducing over fitting (formally, 

reduction of variance). 

 

The central premise when using a feature selection 

technique is that the data contains many features that are 

either redundant or irrelevant, and can thus be removed 

without incurring much loss of information. Redundant or 

irrelevant features are two distinct notions, since one 

relevant feature may be redundant in the presence of another 

relevant feature with which it is strongly correlated. Feature 

selection techniques should be distinguished from feature 

extraction Feature extraction creates new features from 

functions of the original features, whereas feature selection 

returns a subset of the features. Feature selection techniques 

are often 14 used in domains where there are many features 

and comparatively few samples (or data points). Archetypal 

cases for the application of feature selection include the 

analysis of written texts and DNA microarray data, where 

there are many thousands of features, and a few tens to 

hundreds of samples. 

 

F. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization is an approach to problems 

whose solutions can be represented as a point in an n-

dimensional solution space. A number of particles are 

randomly set into motion through this space. At each 

iteration, they observe the "fitness" of themselves and their 

neighbours and "emulate" successful neighbours (those 

whose current position represents a better solution to the 

problem than theirs) by moving towards them. Various 

schemes for grouping particles into competing, semi-

independent flocks can be used, or all the particles can 

belong to a single global flock. This extremely simple 

approach has been surprisingly effective across a variety of 

problem domains.  
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PSO was developed by James Kennedy and Russell 

Eberhart in 1995 after being inspired by the study of bird 

flocking behaviour by biologist Frank Heppner. It is related 

to evolution-inspired problem solving techniques such as 

genetic algorithms.  

 

G. SUPPORT VECTOR MACHINE 

CLASSIFICATION 

In machine learning and statistics, classification is the 

problem of identifying to which of a set of categories (sub-

populations) a new observation belongs, on the basis of 

a training set of data containing observations (or instances) 

whose category membership is known. 

An example would be assigning a given email into "spam" 

or "non-spam" classes or assigning a diagnosis to a given 

patient as described by observed characteristics of the 

patient (gender, blood pressure, presence or absence of 

certain symptoms, etc.). Classification is an example 

of pattern recognition. 

In the terminology of machine learning,[1] classification is 

considered an instance of supervised learning, i.e. learning 

where a training set of correctly identified observations is 

available. The corresponding unsupervised procedure is 

known as clustering, and involves grouping data into 

categories based on some measure of inherent similarity 

or distance. 

 

IV - SIMULATION RESULTS 

 

This section displaying the results obtained for the 

University pavia images and the total number of spectral 

bands of are 103. The following figure depicts the various 

spectral bands of Pavia images, the image are clearly 

describing the visible spectrum variation is each band of 

interest.  

 
Figure 7.3 various spectral bands of Pavia image 

The principal component analysis is applied on the whole 

spectral band images (103). The first three principal 

component vectors are considered for the super pixel 

segmentation. The following figure represents the three 

principal components obtained for the Pavia images. 

 

 
Figure 7.4 three principal component images 

 

The super pixel segmentation results obtained for the 

proposed work is shown in the following figure. 

 

 
Figure 7.5 Super pixel segmentation result 

 

The mean filtered spectral band are shown in the following 

figure where the randomly selected 25 coordinates are used 

for the feature extraction. The figure 7.6 and 7.7 are depicts 

the mean and weighted average filtered Pavia images. 
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Figure 7.6 Mean filtered Pavia images 

 

 
Figure 7.7 Weighted Mean filtered Pavia images 

 

 

The mean feature extracted from the Pavia images are 

compared with the various filtering technique. The 

following table represents the various filtering features 

Super 

pixel 

No. 

Mean 

filtering 

Weighted 

Mean 

filtering 

Gaussian 

filtering 

1 28.4534 0.1915 52 

2 34.8635 0.4845 54 

3 20.7445 0.4335 42 

4 36.9043 0.5100 80 

5 37.1127 0.4891 95 

 

The output obtained from the proposed work is shown in the 

following figure. The Pavia images are having the 9 classes 

as final segmented output.  

 
Figure 7.8 Final segmentation result for Pavia images 

 

V - CONCLUSION 
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In this project, we present a super pixel based segmentation 

method for HSI classification. Instead of using a fixed-size 

region as some previous works, this work adopts the 

superpixel, whose size and shape can be adaptively 

adjusted according to the spatial structures of the HSI. 

Then, the particle swarm optimization algorithm used for 

the optimum feature selection effectively exploit the 

spectral–spatial information within and among superpixels. 

The experimental results on three real HSI images 

demonstrate the superiority of the proposed PSO based 

SVM classifier over several well-known classifiers, in 

terms of both visual quality on the classification map and 

quantitative metrics. The proposed work is implemented on 

MATLAB R2014a software and the obtained results are 

showing the effectiveness of the proposed work.  
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