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Abstract: -- This paper presents an efficient hardware implementation of Convolution and Stochastic pooling algorithm. The main 

objective of the design is to minimize the area and power, while maximizing the throughput. Performing Convolution and 

Stochastic pooling in CPU consumes high amount of power and low performance relative to hardware accelerator implementation. 

In this paper, we propose a hardware accelerator to minimize area, power and maximize throughput. We also propose 

architectural techniques like Interleaving and folding to improve power and area. The optimized approach which is mapped to a 

28nm ASIC target demonstrated significant power and area reduction when compared to traditional model. On the other hand, the 

optimized approach mapped to a FPGA target has increased source utilization when compared to conventional model. 
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I. INTRODUCTION 

 
  Convolutional Neural Network (CNN), a well-

known deep learning architecture extended from artificial 

Neural Network, has been extensively adopted in various 

applications, which include video surveillance, mobile robot 

vision, image search engine in data centers, etc. Convolution 

and Stochastic pooling layers are one of the mainly used 

layers in CNN.  

 Convolution is a computationally intensive function 

that has been widely used in image processing and pattern 

recognition. Also, in the recent development of deep learning 

and Convolutional Neural Networks (CNNs) for image 

applications, Convolution is most heavily used operation. In 

image processing, Convolution represents weighted sum 

computation of a source image and a Convolutional kernel. 

Due to the specific computation pattern of CNN, general 

purpose processors are not efficient for CNN implementation 

and can hardly meet the performance requirement. Thus, 

various accelerators based on ASIC and FPGA designs have 

been proposed recently to improve performance of CNN 

designs. For any CNN algorithm implementation, there are a 

lot of potential solutions that result in a huge design space for 

exploration. 

 General approaches for sub-sampling used Max-

pooling and Average pooling operations. Max-pooling only 

captures the strongest activation of the filter template with 

the input for each region and Average pooling captures the 

mean activation of the filter template. 

In this project, we used a sub-sampling operation called 

Stochastic pooling to reduce the image or feature dimensions 

without losing critical information. As Max-pooling and 

Average pooling eliminates all the activations except 

strongest and mean activations, there may be additional 

activations in the same pooling region that should be taken 

into account when passing information up the network and 

Stochastic pooling ensures that these non-maximal 

activations will also be utilized. 

 Convolution of the source image and kernel is 

performed by sliding 3x3 kernel onto the 4x4 image with one 

pixel stride horizontally and vertically. This generates four 

3x3 activation maps. These activation maps are convoluted 

with 3x3 kernel to generate four Convolution outputs. 

Stochastic pooling is applied on to these four Convolution 

outputs and probability of these Convolution outputs is 

calculated and sorted with SMC blocks. Then a random 

output is selected from all Convolution outputs using random 

generator block in SMC. 

 
Figure 1: Hardware Implementation of Convolution and 

stochastic pooling 
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The above figure gives a brief introduction about hardware 

implementation of Convolution and Stochastic pooling 

design. Each Input image of size 4x4 is convoluted with 

kernel of size 3x3 using a multiplier and all the dot products 

are summed up using adder. The outputs of the adder are then 

given to Stochastic pooling block which then selects random 

output. The inputs and outputs are synchronized using 

registers. 

 

A. Why a hardware accelerator is needed for this 

algorithm? 

 For this algorithm to process on a general purpose 

CPU or GPU becomes very computational intensive with 

high power being consumed. For various applications it 

needs to send preprocessed data to the cloud to allow 

computation to complete and send post processed data back 

which causes increase in latency using the internet. 

The implementation of a Hardware Accelerator enables 

computation to be done locally, therefore reduces latency 

which is essential for some object recognitions application 

e.g. autonomous cars. 

 
Figure 2: Image size vs fps for various hardware 

implementations 

  

 Previous research has been done comparing 

algorithm implementation on different target specifications. 

Figure 1 show how the frames per second are affected with 

different hardware implementations relative to image size. 

 
Figure 3.Kernel size vs fps for various hardware 

implementations 

 

 Previous research also shows that depending on the 

filter size effects the fps for different target specifications. 

Figure 2 and Figure 3 show results comparing CPU, ASIC 

and FPGA. From this research we determined that ASIC 

implementation would be the best choice to decrease power 

and area while maximizing throughput. 

 

II. DESIGN SPECIFICATIONS 

 

 The optimized architecture aims at reducing the 

number of processing elements when compared to the 

conventional model which greatly reduces total area and 

power consumption upon mapping to 28nm ASIC target. Our 

conventional model is a pipelined design, which increased 

throughput and increased area and power consumption. 

Optimized approach when mapped to a FPGA target 

witnessed 20 % reduction in the usage of I/O ports, LUTs 

and Non I/O registered bits. 

 

III. ALGORITHM DESIGN 

 

 Essentially, the target input image is a grey scale, 

16x16 pixel which will be sub-divided into sixteen 4x4 

images for the target hardware architecture in this project. 

Each pixel of the input image is represented by an 8-bit 

positive integer whose values range from 0 to 255. The 

sharpening kernel is a 3x3 array of integer value. Each pixel s 

represented by 8 bit two’s complement integer whose values 

range from -128 to 127. We designed a Convolution and 

Stochastic pooling module to perform the Convolution task 

between each 4x4 input source image and 3x3 sharpening 

kernel. Basically, The 3x3 kernel slides on the image with 

one pixel stride horizontally and vertically and generates four 

activation maps of size 3x3x1. A Convolution layer is 

applied on these activation maps and the Output is generated. 
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 The Convolution part is implemented in hardware 

using the above mathematical formulae. In our design, each 

Convolution and Stochastic pooling between one 4x4 array 

and one 3x3 kernel can be processed using one processing 

element (PE). Our system includes 16 PE blocks which allow 

the module to process all sixteen 4x4 image arrays in parallel. 

Figure 4 below illustrates the structure of one PE. The 

following section will describe how each components of one 

PE performs the Convolution and the pooling. 

 
Figure 4: Structure of one PE 

 

 In order to perform the Convolution task, four 

activation maps of size 3x3 and the sharpening kernel of 3x3 

are converted into five one-dimension array of 1x9 elements 

(pixels) using SMC Reshape blocks. Two 4x1 Multiplexers 

are utilized to sample the data from these five above 

mentioned 1x9 arrays. 

 

 The first multiplexer intakes data from the four 

activation map of 1x9 arrays at each input port to select one 

pixel at each sample time. On the other hand, the same 

sharpening kernel 1x9 vector are repeatedly fed into each of 

the four input ports of the second Multiplexer. The Select 

lines of the two multiplexers are controlled using up 

Counters. These Counters are designed in such a way that 

allows the two Multiplexers to sample each corresponding 

pixel of the kernel and the input image at the same time. 

 
Figure 5: Convolution subsystem 

 

 In figure 5 above, the Convolution subsystem, 

which comprises of a Floating Point Multiplier and Floating 

Point Adder, is utilized to process pairs of corresponding 

pixels. Basically, the computation of the dot product of all 

the corresponding pixels between the input image vector and 

the kernel vector can be performed by the Floating Point 

multiplier. These dot product results are accumulated by 

recursively using a Floating Point Adder through a feedback 

loop to determine the total value, which is the desired 

Convolution output result. Figure 6 below illustrates the 

process of computing a Convolution output value. 

 
Figure 6: Convolution of Image and Kernel 

 

Figure 7 shows the convoluted output when an Image is 

convoluted with sharpening kernel 
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Figure 7: Hardware Implementation of Convolution and 

Stochastic pooling 

After determining the Convolution output value, the output of 

the adder block are also connected to the input of a 1-to-4 

De-multiplexer block in order to collect the result. Each of 

the outputs of the De-multiplexer is connected to a SMC 

sample and hold block (shown in figure 8 below) to store the 

result of the Convolution. Since the sample and hold block 

allow the output to be selected when the enable signal is set 

to high. We use a comparator to control the enable signal of 

the sample and hold unit. Due to the fact that each of the four 

results is arriving in sequential order with one period 

difference, the timing of the 4 sample and hold blocks can be 

determine to sample the correct result. 

 
Figure 8: Sample and hold block 

 

 Basically, one input of the comparator is set to be 

the number of cycles it would take to sample the final result 

of one Convolution while the other input is controlled by a 

counter block to count up to that same number of cycles of 

sampling. When the two inputs of the comparator are equal, 

the output of the comparator makes a transition from 0 to 1. 

Consequently, this comparator output signal makes the 

enable signal change from 0 to 1, allowing the Convolution 

output result to be store in the sample and hold block. 

 
 To start the Stochastic pooling process, we first find 

the sum of the four Convolution results then take the quotient 

between each Convolution result and the sum of the four 

results as shown in the formula above. The sum of the four 

convolution results stored in the sample and holds blocks is 

computed using the three adders in the subsystem (shown in 

figure 9 below). After this, we use the divider block to 

calculate the quotient between each convolution output and 

the Sum to determine the probability of each convolution 

output 

 
Figure 9: Subsystem to find probability 

 
Figure 10: Stochastic pooling 

We then sample from the multinomial distribution based on p 

to pick a location l within the region 

 

 
Figure 11: Stochastic pooling output Image reconstruction 

Figure 11 above shows the output of Stochastic pooling 

which is generated by sub-sampling convoluted image. 

 

A. Optimization 

 Initially, the design of one PE is consisted of 4 

multipliers and does not require any multiplexer to sample 
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the data from the input image and the sharpening kernel. 

However, since the parallel computing of the Convolution 

part is limited by the feedback loop of the adder to 

accumulate the results of all output multiplier. We decided to 

use Multiplexers to sample the input data using Interleaving 

technique and implementing the parallel computing by using 

16 PEs in parallel for processing 64 (16x4 3x3) activation 

maps. 

 

 For each PE, an interleaving factor of 4 is applied to 

process all activation maps. In order to perform correct 

accumulation in the feedback loop, each PE has to store four 

intermediate dot products in the feedback loop. As a result, 

we can have at least four registers to add delay of 4 units in 

the feedback loop. However, since the Floating Point Adder 

comes with an internal delay of 9 units, this factor sets the 

minimum latency of the loop to 9 cycles. 

 

 In this architecture, for an interleaving factor of 4, 

we have to waste 5 cycles to feed in the second element of 

first activation map. By interleaving, we reduce the number 

of multipliers used in PEs. As a result, the amount hardware 

resources required to perform Convolution and Stochastic 

pooling design is reduced and this reduced area drastically. 

We have not added any additional feedback registers to 

balance the latency as the adder has in-built delay of 9 units. 

Technically, this is the best design where we can achieve best 

power and area. 

 

 We cannot further increase the interleaving factor 

more than 4 units and reduce the number of PEs as Stochastic 

pooling operation is performed only on four Convolution 

outputs. Along with interleaving, we also implemented 

folding architectural technique by feeding four activation 

maps into a multiplexer at a time in every PE rather than 

using multiple PEs which greatly reduced the area by 

decreasing the number of PEs. As it is highly pipelined 

design, throughput of the design is approximately the same as 

the initial model. 

 

 Even though we have a recursive algorithm, we can 

pipelining before recursive adder by adding registers. 

Without any pipelining in the design, clock frequency is 

relatively slow, while the whole Convolution and Stochastic 

pooling design took one cycle. With pipelining, clock 

frequency is relatively fast, and number of Convolution and 

Stochastic pooling operations happen in flight, increasing the 

throughput. However, area of the design is increased due to 

addition of hardware. This additional overhead increases 

power consumption of the design. 

 

IV. IMPLEMENTATION RESULTS 

 

 As we discussed earlier, we implemented 

convolution and stochastic pooling in parallelism and 

interleaving architectures and mapped them to 28nm ASIC 

and FPGA targets. Each design has its own advantages and 

disadvantages. Finding a sweet spot that reduces area, power 

consumption and does not degrade throughput is very critical. 

 

A. Asic Implementation 

 Following table gives a brief idea about Area and 

Power comparisons between optimized and conventional 

models. 

 
Table 1: Represents area and power consumption of 

various techniques 

As we observe from the following figure total area and cell 

area is the least in the case of interleaved & folded design 

whereas area is increased in parallelism architecture. 

 
Figure 12: Comparison of area between parallelism and 

Interleaving 
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Figure 13: Comparison of Power between parallelism and 

Interleaving 

 In the above figure, power is greatly reduced when 

the design is interleaved and power consumption is high in 

the case of parallelism design 

 

B. FPGA Implementation 

 FPGA mapping was done using Synplify Pro to 

evaluate the resource utilization. The FPGA Target used is 

Virtex-7 FPGA XC7VX485T-2FFG1761. 

 
Table2: Represents resource utilization of various 

techniques  

 
Figure 14: Comparison of resource utilization between 

various techniques 

 

 

V. CONCLUSION 

 

 In this work, we produced efficient designs using 

optimization techniques to study the trade-offs between 

throughput, area and power. Initially, we created a design 

that utilizes parallel computing to target the high throughput. 

However, this design increased area and power consumption. 

From that throughput baseline, we optimized the design to 

reduce area and energy consumption by using interleaving 

technique in sampling the input data and also by using the 

folding technique to reuse the same FP Multiplier in one 

processing element. We realized that the final design has 

nearly the same throughput (1 cycle delay difference) but 

consumes 20-30 % time lower amount of energy and requires 

20 % times, 40 % times lower amount of resources and area, 

respectively. Finally, we conclude that following Interleaving 

and Folding techniques are best techniques that can be used 

to achieve less area and minimum power while achieving 

decent throughput for this target design. 

 

REFERENCES 

 

[1] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, 

“What is the best multi-stagearchitecture for object 

recognition?” in Proc. International Conference on Computer 

Vision(ICCV’09). IEEE, 2009. 

 

[2] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of 

features: Spatial pyramid matching forrecognizing natural 

scene categories,” in CVPR ’06: Proceedings of the 2006 

IEEE ComputerSociety Conference on Computer Vision and 

Pattern Recognition. Washington, DC, USA: IEEEComputer 

Society, 2006, pp. 2169–2178. 

 

[3] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. 

Poggio, “Robust object recognition withcortex-like 

mechanisms,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol.29, no. 3, pp. 411–426, 2007.  

 

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 

“Gradient- basedlearning applied to document recognition,” 

Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 

November 1998. 

http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf2. 

 

[5] http://e-lab.github.io/data/papers/iscas2010CVP.pdf 

 

[6] http://people.idsia.ch/~juergen/ijcai2011.pdf 



 

 

   

ISSN (Online) 2394-6849 

 

International Journal of Engineering Research in Electronics and Communication 

Engineering (IJERECE)  

Vol 4, Issue 3, March 2017 
 

 

                 39 

 

[7] http://yann.lecun.com/exdb/publis/pdf/farabet-iscas-

10.pdf 

 

[8] S. Arya and D. M. Mount, “Algorithms for fast vector 

quantization,” in Proc. DCC 93: Data Compression Conf., J. 

A. Storer and M. Cohn, Eds. Piscataway, NJ: IEEE Press, pp. 

381– 390. 

 

[9] H.-U. Bauer and K. R. Pawelzik, “Quantifying the 

neighborhood preservation of self-organizing feature maps,” 

IEEE Trans. Neural Networks, vol. 3, pp. 570–579, 1992. 

 

[10] Y. Bengio, Y. Le Cun, and D. Henderson, “Globally 

trained handwritten word recognizer using spatial 

representation, space displacement neural networks, and 

hidden Marko models,” in Advances in Neutral Information 

Processing Systems 6. San Mateo, CA: Morgan Kaufmann, 

1994. 

 

[11] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa, 

and C. L. Wilson, “Evaluation of pattern classifiers for 

fingerprint and OCR applications,” Pattern Recognition, vol. 

27, no. 4, pp.485-501, Apr. 1994 

 

[12] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, 

L. Jackel, Y. Le Cun, U. Muller, E. Sackinger, P. Simard, and 

V. N. Vapnik, “Comparison of classifier methods: A case 

study in handwritten digit recognition,” in Proc. Int. Conf. 

Pattern Recognition. Los Alamitos, CA: IEEE Comput. Soc. 

Press, 1994. 

 

[13] D. K. Burton, “Text-dependent speaker verification 

using vector quantization source coding,” IEEE Trans. 

Acoust., Speech, Signal Process., vol. ASSP-35, pp. 133, 

1987. 

 

[14] R. Chellappa, C. L. Wilson, and S. Sirohey, “Human and 

machine recognition of faces: A survey,” Proc. IEEE, vol. 83, 

pp. 5, pp. 705–740, 1995. 

 

[15] I. J. Cox, J. Ghosn, and P. N. Yianilos, “Feature-based 

face recognition using mixture-distance,” in Computer Vision 

and Pattern Recognition. Piscataway, NJ: IEEE Press, 1996. 

 

[16] R. Brunelli and T. Poggio, “Face recognition: Features 

versus templates,” IEEE Trans. Pattern Anal. Machine Intell., 

vol. 15, pp. 1042–1052, Oct. 1993. 

 




