
ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 3, March 2017

 33

Convolution and Stochastic Pooling Algorithm

[1]

Monish Katari,
[2]

 Reethu Gali Ramesh,
[3]

 MSA Srivatsava
[1]

 Department of Electrical Engineering and Computer Science,
[2]

 Department of Electrical Engineering,
[3]

 Department of ECE
[1]

 Graduated from Texas A&M University – Kingsville,
[2]

 Graduated from Arizona State University,
[3]

 PhD Scholar of ECE, JNTUCEA – JNT University - Anantapuramu

Abstract: -- This paper presents an efficient hardware implementation of Convolution and Stochastic pooling algorithm. The main

objective of the design is to minimize the area and power, while maximizing the throughput. Performing Convolution and

Stochastic pooling in CPU consumes high amount of power and low performance relative to hardware accelerator implementation.

In this paper, we propose a hardware accelerator to minimize area, power and maximize throughput. We also propose

architectural techniques like Interleaving and folding to improve power and area. The optimized approach which is mapped to a

28nm ASIC target demonstrated significant power and area reduction when compared to traditional model. On the other hand, the

optimized approach mapped to a FPGA target has increased source utilization when compared to conventional model.

Keywords: - Convolutional Neural Network (CNN), Central processing unit (CPU), Graphics processing unit (GPU)

I. INTRODUCTION

 Convolutional Neural Network (CNN), a well-

known deep learning architecture extended from artificial

Neural Network, has been extensively adopted in various

applications, which include video surveillance, mobile robot

vision, image search engine in data centers, etc. Convolution

and Stochastic pooling layers are one of the mainly used

layers in CNN.

 Convolution is a computationally intensive function

that has been widely used in image processing and pattern

recognition. Also, in the recent development of deep learning

and Convolutional Neural Networks (CNNs) for image

applications, Convolution is most heavily used operation. In

image processing, Convolution represents weighted sum

computation of a source image and a Convolutional kernel.

Due to the specific computation pattern of CNN, general

purpose processors are not efficient for CNN implementation

and can hardly meet the performance requirement. Thus,

various accelerators based on ASIC and FPGA designs have

been proposed recently to improve performance of CNN

designs. For any CNN algorithm implementation, there are a

lot of potential solutions that result in a huge design space for

exploration.

 General approaches for sub-sampling used Max-

pooling and Average pooling operations. Max-pooling only

captures the strongest activation of the filter template with

the input for each region and Average pooling captures the

mean activation of the filter template.

In this project, we used a sub-sampling operation called

Stochastic pooling to reduce the image or feature dimensions

without losing critical information. As Max-pooling and

Average pooling eliminates all the activations except

strongest and mean activations, there may be additional

activations in the same pooling region that should be taken

into account when passing information up the network and

Stochastic pooling ensures that these non-maximal

activations will also be utilized.

 Convolution of the source image and kernel is

performed by sliding 3x3 kernel onto the 4x4 image with one

pixel stride horizontally and vertically. This generates four

3x3 activation maps. These activation maps are convoluted

with 3x3 kernel to generate four Convolution outputs.

Stochastic pooling is applied on to these four Convolution

outputs and probability of these Convolution outputs is

calculated and sorted with SMC blocks. Then a random

output is selected from all Convolution outputs using random

generator block in SMC.

Figure 1: Hardware Implementation of Convolution and

stochastic pooling

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 3, March 2017

 34

The above figure gives a brief introduction about hardware

implementation of Convolution and Stochastic pooling

design. Each Input image of size 4x4 is convoluted with

kernel of size 3x3 using a multiplier and all the dot products

are summed up using adder. The outputs of the adder are then

given to Stochastic pooling block which then selects random

output. The inputs and outputs are synchronized using

registers.

A. Why a hardware accelerator is needed for this

algorithm?

 For this algorithm to process on a general purpose

CPU or GPU becomes very computational intensive with

high power being consumed. For various applications it

needs to send preprocessed data to the cloud to allow

computation to complete and send post processed data back

which causes increase in latency using the internet.

The implementation of a Hardware Accelerator enables

computation to be done locally, therefore reduces latency

which is essential for some object recognitions application

e.g. autonomous cars.

Figure 2: Image size vs fps for various hardware

implementations

 Previous research has been done comparing

algorithm implementation on different target specifications.

Figure 1 show how the frames per second are affected with

different hardware implementations relative to image size.

Figure 3.Kernel size vs fps for various hardware

implementations

 Previous research also shows that depending on the

filter size effects the fps for different target specifications.

Figure 2 and Figure 3 show results comparing CPU, ASIC

and FPGA. From this research we determined that ASIC

implementation would be the best choice to decrease power

and area while maximizing throughput.

II. DESIGN SPECIFICATIONS

 The optimized architecture aims at reducing the

number of processing elements when compared to the

conventional model which greatly reduces total area and

power consumption upon mapping to 28nm ASIC target. Our

conventional model is a pipelined design, which increased

throughput and increased area and power consumption.

Optimized approach when mapped to a FPGA target

witnessed 20 % reduction in the usage of I/O ports, LUTs

and Non I/O registered bits.

III. ALGORITHM DESIGN

 Essentially, the target input image is a grey scale,

16x16 pixel which will be sub-divided into sixteen 4x4

images for the target hardware architecture in this project.

Each pixel of the input image is represented by an 8-bit

positive integer whose values range from 0 to 255. The

sharpening kernel is a 3x3 array of integer value. Each pixel s

represented by 8 bit two’s complement integer whose values

range from -128 to 127. We designed a Convolution and

Stochastic pooling module to perform the Convolution task

between each 4x4 input source image and 3x3 sharpening

kernel. Basically, The 3x3 kernel slides on the image with

one pixel stride horizontally and vertically and generates four

activation maps of size 3x3x1. A Convolution layer is

applied on these activation maps and the Output is generated.

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 3, March 2017

 35

 The Convolution part is implemented in hardware

using the above mathematical formulae. In our design, each

Convolution and Stochastic pooling between one 4x4 array

and one 3x3 kernel can be processed using one processing

element (PE). Our system includes 16 PE blocks which allow

the module to process all sixteen 4x4 image arrays in parallel.

Figure 4 below illustrates the structure of one PE. The

following section will describe how each components of one

PE performs the Convolution and the pooling.

Figure 4: Structure of one PE

 In order to perform the Convolution task, four

activation maps of size 3x3 and the sharpening kernel of 3x3

are converted into five one-dimension array of 1x9 elements

(pixels) using SMC Reshape blocks. Two 4x1 Multiplexers

are utilized to sample the data from these five above

mentioned 1x9 arrays.

 The first multiplexer intakes data from the four

activation map of 1x9 arrays at each input port to select one

pixel at each sample time. On the other hand, the same

sharpening kernel 1x9 vector are repeatedly fed into each of

the four input ports of the second Multiplexer. The Select

lines of the two multiplexers are controlled using up

Counters. These Counters are designed in such a way that

allows the two Multiplexers to sample each corresponding

pixel of the kernel and the input image at the same time.

Figure 5: Convolution subsystem

 In figure 5 above, the Convolution subsystem,

which comprises of a Floating Point Multiplier and Floating

Point Adder, is utilized to process pairs of corresponding

pixels. Basically, the computation of the dot product of all

the corresponding pixels between the input image vector and

the kernel vector can be performed by the Floating Point

multiplier. These dot product results are accumulated by

recursively using a Floating Point Adder through a feedback

loop to determine the total value, which is the desired

Convolution output result. Figure 6 below illustrates the

process of computing a Convolution output value.

Figure 6: Convolution of Image and Kernel

Figure 7 shows the convoluted output when an Image is

convoluted with sharpening kernel

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 3, March 2017

 36

Figure 7: Hardware Implementation of Convolution and

Stochastic pooling

After determining the Convolution output value, the output of

the adder block are also connected to the input of a 1-to-4

De-multiplexer block in order to collect the result. Each of

the outputs of the De-multiplexer is connected to a SMC

sample and hold block (shown in figure 8 below) to store the

result of the Convolution. Since the sample and hold block

allow the output to be selected when the enable signal is set

to high. We use a comparator to control the enable signal of

the sample and hold unit. Due to the fact that each of the four

results is arriving in sequential order with one period

difference, the timing of the 4 sample and hold blocks can be

determine to sample the correct result.

Figure 8: Sample and hold block

 Basically, one input of the comparator is set to be

the number of cycles it would take to sample the final result

of one Convolution while the other input is controlled by a

counter block to count up to that same number of cycles of

sampling. When the two inputs of the comparator are equal,

the output of the comparator makes a transition from 0 to 1.

Consequently, this comparator output signal makes the

enable signal change from 0 to 1, allowing the Convolution

output result to be store in the sample and hold block.

 To start the Stochastic pooling process, we first find

the sum of the four Convolution results then take the quotient

between each Convolution result and the sum of the four

results as shown in the formula above. The sum of the four

convolution results stored in the sample and holds blocks is

computed using the three adders in the subsystem (shown in

figure 9 below). After this, we use the divider block to

calculate the quotient between each convolution output and

the Sum to determine the probability of each convolution

output

Figure 9: Subsystem to find probability

Figure 10: Stochastic pooling

We then sample from the multinomial distribution based on p

to pick a location l within the region

Figure 11: Stochastic pooling output Image reconstruction

Figure 11 above shows the output of Stochastic pooling

which is generated by sub-sampling convoluted image.

A. Optimization

 Initially, the design of one PE is consisted of 4

multipliers and does not require any multiplexer to sample

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 3, March 2017

 37

the data from the input image and the sharpening kernel.

However, since the parallel computing of the Convolution

part is limited by the feedback loop of the adder to

accumulate the results of all output multiplier. We decided to

use Multiplexers to sample the input data using Interleaving

technique and implementing the parallel computing by using

16 PEs in parallel for processing 64 (16x4 3x3) activation

maps.

 For each PE, an interleaving factor of 4 is applied to

process all activation maps. In order to perform correct

accumulation in the feedback loop, each PE has to store four

intermediate dot products in the feedback loop. As a result,

we can have at least four registers to add delay of 4 units in

the feedback loop. However, since the Floating Point Adder

comes with an internal delay of 9 units, this factor sets the

minimum latency of the loop to 9 cycles.

 In this architecture, for an interleaving factor of 4,

we have to waste 5 cycles to feed in the second element of

first activation map. By interleaving, we reduce the number

of multipliers used in PEs. As a result, the amount hardware

resources required to perform Convolution and Stochastic

pooling design is reduced and this reduced area drastically.

We have not added any additional feedback registers to

balance the latency as the adder has in-built delay of 9 units.

Technically, this is the best design where we can achieve best

power and area.

 We cannot further increase the interleaving factor

more than 4 units and reduce the number of PEs as Stochastic

pooling operation is performed only on four Convolution

outputs. Along with interleaving, we also implemented

folding architectural technique by feeding four activation

maps into a multiplexer at a time in every PE rather than

using multiple PEs which greatly reduced the area by

decreasing the number of PEs. As it is highly pipelined

design, throughput of the design is approximately the same as

the initial model.

 Even though we have a recursive algorithm, we can

pipelining before recursive adder by adding registers.

Without any pipelining in the design, clock frequency is

relatively slow, while the whole Convolution and Stochastic

pooling design took one cycle. With pipelining, clock

frequency is relatively fast, and number of Convolution and

Stochastic pooling operations happen in flight, increasing the

throughput. However, area of the design is increased due to

addition of hardware. This additional overhead increases

power consumption of the design.

IV. IMPLEMENTATION RESULTS

 As we discussed earlier, we implemented

convolution and stochastic pooling in parallelism and

interleaving architectures and mapped them to 28nm ASIC

and FPGA targets. Each design has its own advantages and

disadvantages. Finding a sweet spot that reduces area, power

consumption and does not degrade throughput is very critical.

A. Asic Implementation

 Following table gives a brief idea about Area and

Power comparisons between optimized and conventional

models.

Table 1: Represents area and power consumption of

various techniques

As we observe from the following figure total area and cell

area is the least in the case of interleaved & folded design

whereas area is increased in parallelism architecture.

Figure 12: Comparison of area between parallelism and

Interleaving

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 3, March 2017

 38

Figure 13: Comparison of Power between parallelism and

Interleaving

 In the above figure, power is greatly reduced when

the design is interleaved and power consumption is high in

the case of parallelism design

B. FPGA Implementation

 FPGA mapping was done using Synplify Pro to

evaluate the resource utilization. The FPGA Target used is

Virtex-7 FPGA XC7VX485T-2FFG1761.

Table2: Represents resource utilization of various

techniques

Figure 14: Comparison of resource utilization between

various techniques

V. CONCLUSION

 In this work, we produced efficient designs using

optimization techniques to study the trade-offs between

throughput, area and power. Initially, we created a design

that utilizes parallel computing to target the high throughput.

However, this design increased area and power consumption.

From that throughput baseline, we optimized the design to

reduce area and energy consumption by using interleaving

technique in sampling the input data and also by using the

folding technique to reuse the same FP Multiplier in one

processing element. We realized that the final design has

nearly the same throughput (1 cycle delay difference) but

consumes 20-30 % time lower amount of energy and requires

20 % times, 40 % times lower amount of resources and area,

respectively. Finally, we conclude that following Interleaving

and Folding techniques are best techniques that can be used

to achieve less area and minimum power while achieving

decent throughput for this target design.

REFERENCES

[1] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun,

“What is the best multi-stagearchitecture for object

recognition?” in Proc. International Conference on Computer

Vision(ICCV’09). IEEE, 2009.

[2] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of

features: Spatial pyramid matching forrecognizing natural

scene categories,” in CVPR ’06: Proceedings of the 2006

IEEE ComputerSociety Conference on Computer Vision and

Pattern Recognition. Washington, DC, USA: IEEEComputer

Society, 2006, pp. 2169–2178.

[3] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T.

Poggio, “Robust object recognition withcortex-like

mechanisms,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol.29, no. 3, pp. 411–426, 2007.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient- basedlearning applied to document recognition,”

Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

November 1998.

http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf2.

[5] http://e-lab.github.io/data/papers/iscas2010CVP.pdf

[6] http://people.idsia.ch/~juergen/ijcai2011.pdf

ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 3, March 2017

 39

[7] http://yann.lecun.com/exdb/publis/pdf/farabet-iscas-

10.pdf

[8] S. Arya and D. M. Mount, “Algorithms for fast vector

quantization,” in Proc. DCC 93: Data Compression Conf., J.

A. Storer and M. Cohn, Eds. Piscataway, NJ: IEEE Press, pp.

381– 390.

[9] H.-U. Bauer and K. R. Pawelzik, “Quantifying the

neighborhood preservation of self-organizing feature maps,”

IEEE Trans. Neural Networks, vol. 3, pp. 570–579, 1992.

[10] Y. Bengio, Y. Le Cun, and D. Henderson, “Globally

trained handwritten word recognizer using spatial

representation, space displacement neural networks, and

hidden Marko models,” in Advances in Neutral Information

Processing Systems 6. San Mateo, CA: Morgan Kaufmann,

1994.

[11] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa,

and C. L. Wilson, “Evaluation of pattern classifiers for

fingerprint and OCR applications,” Pattern Recognition, vol.

27, no. 4, pp.485-501, Apr. 1994

[12] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon,

L. Jackel, Y. Le Cun, U. Muller, E. Sackinger, P. Simard, and

V. N. Vapnik, “Comparison of classifier methods: A case

study in handwritten digit recognition,” in Proc. Int. Conf.

Pattern Recognition. Los Alamitos, CA: IEEE Comput. Soc.

Press, 1994.

[13] D. K. Burton, “Text-dependent speaker verification

using vector quantization source coding,” IEEE Trans.

Acoust., Speech, Signal Process., vol. ASSP-35, pp. 133,

1987.

[14] R. Chellappa, C. L. Wilson, and S. Sirohey, “Human and

machine recognition of faces: A survey,” Proc. IEEE, vol. 83,

pp. 5, pp. 705–740, 1995.

[15] I. J. Cox, J. Ghosn, and P. N. Yianilos, “Feature-based

face recognition using mixture-distance,” in Computer Vision

and Pattern Recognition. Piscataway, NJ: IEEE Press, 1996.

[16] R. Brunelli and T. Poggio, “Face recognition: Features

versus templates,” IEEE Trans. Pattern Anal. Machine Intell.,

vol. 15, pp. 1042–1052, Oct. 1993.

