
ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 4, April 2017

 53

Implementation of Proposed Highspeed,

Low Power 16 Bit Multiplier

[1]
Ankita Gupta,

[2]
Mandeep Singh

[3]
Narula Sandeep Shrivastava

[1][2][3]
ECE Department JIIT, Noida- 201309, India

Abstract- — We have proposed a 16-bit high-speed multiplier using VHDL. With this method, the number of partial products

has been reduced and the carry during addition has been eliminated. It also reduces the switching power which makes this

multiplier a low power multiplier as compared to other multipliers. Due to the elimination of carry, the delay has been reduced

which makes it a faster multiplier as well. The RTL circuit is much simpler, this decreased circuit complexity which leads to a

better circuit with lesser delay and easier, cost-efficient way to implement the hardware.

Index Terms— VHDL, Xilinx, Multiplier, Partial Addition.

I. INTRODUCTION

 VLSI (Very Large Scale Integration) design

methodology ba- sically follows two design flows: (a)

Front–end design flow. (b) Back-end design flow. Back–

end design flow is to lower down and optimize the area,

delay, and power of the circuits. Here, designers deal with

the transistor level schematics and its corresponding

layouts defining the original geometry of the design that

gets to fabrication. In front-end design flow, the major

focus remains on the functionality of the individual

components allocated to the processor along with its

overall functionality. Now, in industry, both these design

methodol- ogy work hand in hand. Front-end flow does

the functional analysis of the design system.

 We are giving input to a known system and getting an

output as RTL description using the back–end for circuit

implementa- tion. But on the other hand, if we assume

that we do not know the system and try to estimate the

system using the output and the input; it becomes difficult

in regular cases. Therefore, the main purpose in doing this

work is to have an RTL description of a binary multiplier

which can be synthesized [1][5] without even using the

costly synthesis tools. The complete design has been

made by using hardware description language (HDL)

broadly in VHDL (Very High Specific Integrated Circuits

HDL). VHDL is a most commonly used and popular

standard language in the industry used to describe the

hardware from the abstract form to the concrete level,

technically from the design specifications to the RTL

(Register Transfer Level) de- scriptions. We have shown

the implementation of the designed multiplier.

The entire paper has been constructed in sections. Section

II defines the details of the multiplier architecture. Section

III shows the synthesized binary multiplier results with its

RTL circuit and the synthesis report. Section IV is the

conclusion.

II. MULTIPLIER ARCHITECTURE

 Input Block- The input block has two input registers of

16 bits each. We have enlisted them in VHDL as entities.

They are defined as input port A: in std_logic_vector (15

downto 0); B: in std_logic_vector (15 downto 0); where

“std_logic” depicts the standard logic set by

ieee.std_logic_1164.all, which is standard library setup by

IEEE [11]. Vector (15 downto 0) is used as both the input

ports have 16 bits each.

 Operating Clock- Necessity of clock comes in when

every job, task or operation assigned to the processor

follows up a machine cycle. Every processor made till

date has its own ma - chine cycle. To make every task

assigned to the processor work according to the machine

cycle, operating clock is needed. The clock is modeled in

VHDL as: clk: in std_logic; in the entity. The clock signal

is named as “clk”.

 Output Block- This block consists of a single register

of 32 bits. The VHDL modeling for this block at entity

level is: re- sult: out std_logic_vector (31 downto 0).

 Multiplier- This section states the operation of

multiplication of two unsigned binary numbers (16 bits),

five signals (tempo- rary value holder) with the name of

tmp, tmp2, tmp3, tmp4, tmp5 each of 32-bits and count

and this operation is being synchronized with every

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 4, April 2017

 51

change in the operating clock. Therefore, the inputs and

output taken in consideration for the design are multiplier

operand, multiplicand operand, clock, tmp, tmp2, tmp3,

tmp4, tmp5, count and result. The VHDL model at entity

level is:

multiplier: in std_logic_vector (15 downto 0);

multiplicand : in std_logic_vector (15 downto 0); clk : in

std_logic;

signal tmp : std_logic_vector (31 downto 0) :=

"000000000000000000 000000 00000000" ;

signal tmp2 : std_logic_vector (31 downto 0) :=

"00000000000000000000000000000000";

signal tmp3 : std_logic_vector (31 downto 0)

:=

"00000000000000000000000000000000";

signal tmp4 : std_logic_vector (31 downto 0) :=

"00000000000000000000000000000000";

signal tmp5 : std_logic_vector (31 downto 0) :=

"00000000000000000000000000000000";

signal variable count : INTEGER:=0;

result : out std_logic_vector (31 downto 0);

where clk is the clock. Here tmp, tmp2, tmp3, tmp4 and

tmp5 are used as temporary signals to store the

intermediate calcu- lations of the multiplier and count

variable is used to keep a track of a number of execution

of multiplication between mul- tiplier and multiplicand.

The algorithm used for this multiplier design states that

the multiplication can be carried out by partial addition

and shift- ing. It says that:

a) If the least significant bit of the multiplier is '1', then

the multiplicand is simply copied as a partial addition in

(31 downto 16);

b) If the least significant bit the multiplier is '0', then the

par- tial addition is '0'.

c) Whenever a partial addition is done, it is shifted one bit

to

the right of the previous partial addition. This lead to no

carry, hence no use of adders.

This process is continued until all the multiplier bits are

checked. Therefore, to perform it, we take a temporary

regis- ter (32 bits) “tmp” and initialize it with all zeroes.

A variable is taken, named “count” which is also

initialized by '0'. This “count” is used to note how many

bits of multiplier get exe - cuted per clock cycle. That is

the whole operation of multipli - cation has to finish

within a stipulated time (count<16). At first, the all

temporary register (tmp, tmp2, tmp3, tmp4, tmp5) each of

32 bits has been initialized as “tmp” value mentioned

above. They are taken to reduce data over-writing.

In the architecture of the design, if the clock “clk” signal

is high then we run a process triggered by multiplicand,

multi- plier, clock and count. The least significant 16 bits

of register “tmp” {tmp(15)='0', tmp(14)='0', tmp(13)='0',

tmp(12)='0', tmp(11)='0',t mp(10)='0', tmp(9)='0',

tmp(8)='0', tmp(7)='0', tmp(6)='0',tmp(5)='0', tmp(4)='0',

tmp(3)='0',tmp(2) ='0', tmp(1)='0', tmp(0)='0'} are

replaced by the bits of the multi- plier. Now, if tmp(0)='1',

then the partial addition is done fol- lowed by 1 bit right

shift otherwise if tmp(0)=’0’ only 1 bit right shift is

performed, the result is then stored in “tmp3”. In the

following clock cycles, the least significant bit of tmp3 is

checked and the same process is repeated, i.e. If

tmp3(0)=’1’, the most significant 16 bits of register

“tmp4” {tmp4(31)='0', tmp4(30)='0', tmp4(29)='0',

tmp4(28)='0', tmp4(27)='0', tmp4(26)='0', tmp4(25)='0',

tmp4(24)='0', tmp4(23)='0', tmp4(22)='0', tmp4(21)='0',

tmp4(20)='0', tmp4(19)='0', tmp4(18)='0', tmp4(17)='0',

tmp4(16)='0'} are replaced by the result of the partial

addition obtained due to the addition of tmp3(31 downto

16) and the multiplicand, and the least 16 bits of tmp3, i.e.

tmp3(15 downto 0) is copied to tmp4(15

downto 0). The result is then right shifted by 1 bit [2] and

is stored in tmp5. Whereas if tmp3(0)=’0’ then 1 bit right

shift is done in tmp3 and the result is stored directly in

tmp5. At the end of the clock cycle, tmp5 is copied to

tmp3 and count is in- creased.

This execution continues till the count gets greater than or

equal to 16. Finally, the result is loaded with the final

value of “tmp3” register obtained in final clock cycle.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 4, April 2017

 52

Fig 1. Flowchart of Multiplier

Fig 2. An Example of our algorithm using 4-bit

III. RESULTS

Fig 3. Result of the Multiplier (in 16-bit)

Fig 4. Delay between tmp5 and tmp3 (Block-wise Delay)

Fig 5. Delay between multiplier and tmp3 (Block-wise

Delay)

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 4, April 2017

 53

Fig 6. Delay of result (Final output)

Fig 7. Final Path Delay of Multiplier

Fig 8. RTL schematic circuit of Multiplier

IV. CONCLUSION

 In this paper, a 16-bit multiplier having high-speed

and low power has been implemented. This multiplier

does not use any carry adder method which makes the

circuit less complex and has a smaller delay. It just

partially adds and shifts one right. The demand of this

subject is growing with recent advances in various

hardware technologies, as the structure density of the new

devices grows and the price-per element decreases and the

demand for minimization of the current consumption rises

[4].

REFERENCES

[1] Douglas L. Perry “VHDL Programming by

Example” Fourth Edi- tion,Tata McGraw-Hill

Publications, DOI: 10.1036/0071409548.

[2] J. Salivahanan, Arivazhagan S. Digital Circuits And

Design, 3E. Vikas Publishing House Pvt Ltd, 2009.

[3] Volnei A. Pedroni, “Circuit Design with VHDL”,

MIT Press, Cam- bridge, Massachussetts, 2004, ISBN 0-

262-16224-5 © 2004 Mass- achusetts Institute of

Technology

[4]Fedra, Zbynek, and Jaromir Kolouch. "VHDL

procedure for combinational divider."

Telecommunications and Signal Process- ing (TSP), 2011

34th International Conference on. IEEE, 2011.

[5] Sadhu, A., & Bhattacharjee, P. (2014). Methodology

of Standard Cell Library Design in. LIB Format. Journal

of VLSI Design Tools & Technology, 4(1), 30-38.

[6] Pritam Bhattacharjee, Arindam Sadhu, Kunal Das.

“A Register- Transfer-Level Description of Synthesizable

Binary Multiplier and Binary Divider”, 2015.

[7] Kuan-Hung Chen, Yuan-Sun Chu, and Yu-Min

Chen, Jiun-In Guo. “A High-Speed/Low-Power

Multiplier Using an Advanced Spuri- ous Power

Suppression Technique”, 2007, 1-4244-0921-7/07 on

IEEE.

[8] Premananda B.S., Samarth S. Pai, Shashank B.,

Shashank S. Bhat. “Design and Implementation of 8-Bit

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 4, April 2017

 54

Vedic Multiplier”, IJA- REEIE Vol. 2, Issue 12,

December 2013.

[9] Ryosuke Nakamoto, Sakae Sakuraba, Takeshi

Onomi, Shigeo Sato, and Koji Nakajima. “4-bit SFQ

Multiplier Based on Booth Encoder”, IEEE

TRANSACTIONS ON APPLIED SUPERCON-

DUCTIVITY, VOL. 21, NO. 3, JUNE 2011.

[10] Juny Mary Jose, Reen Paul. “A High Speed Booth

Wallace Multi- plier Using Pipelining Technique”,

IJAREEIE Vol. 5, Special Issue 4, March 2016.

[11] Ashenden, Peter J. "VHDL standards." Design &

Test of Comput- ers, IEEE 18.5 (2001): 122-123

