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Abstract -  Numerical methods for solving fractional differential equations are computationally heavy due to the need of floating-

point operations, the non-local nature of the fractional differential operators and more importantly, the data flow inside the entire 

memory system of a computer. Hence such systems can be implemented on Graphics Processing Unit (GPU) which has the parallel 

computing power for quicker simulation. A GPU has a number of threads where each thread can execute different program. 

MATLAB and Parallel Computing toolboxe can be used to access the computational power of GPU and MATLAB code can be 

implemented on the GPU. This helps us to achieve significant & faster computation than a normal CPU system. In this paper an 

attempt is made to implement numerical method for simple fractional ordinary differential equation (FODE) on a Dual Core CPU 

and NVIDIA GPU. This paper presents the relative performance of a GPU v/s CPU for fractional Euler’s method to solve FODE. 

From the results presented, it is observed that GPU provides two times speed up for fractional Euler’s method. 

 
Index Terms— fractional differential equations, fractional ordinary differential equation, Graphics Processing Unit 

 

I.INTRODUCTION 
 

Fractional calculus is a 300 years old subject which 

involves the study of ordinary differentiation and 

integration to non integer order. Over the past three 

decades, it has gained huge popularity and fractional 

differential equations (FDEs) has been extensively 

used for the description various phenomena 

developing in engineering, physics and science [1]. 

With the rapid development of technology, the 

fractional calculus gets involved in more and more 

areas, especially in control theory, viscoelastic theory, 

electronic chemicals fractal theory and so on [2]. For 

FDEs analytical or approximate methods can be 

difficult or complex to solve and thus numerical 

methods are required [3]. In the past few decades, 

several numerical methods have been developed for 

solving FDEs such as the Legendre wavelet method, 

the spectral method and quartered shifted Legendre 

method based on GaussCLabatt [4]. 

 In [8], differential equations are among the 

most important mathematical tools used in producing 

models in the field of physical sciences, biological 

sciences and engineering. Ordinary Differential 

Equations (ODEs) can be solved by numerical 

methods such as Euler‟s method, Runge Kutta 

methods and the families of Adams Bashforth and 

Adams Moulton methods where speed of processing is 

more desirable than the accuracy [5]. Among all 

numerical methods Euler‟s method has proved to be 

efficient solving ODEs [6].  

 In the field of numerical method such as 

Euler‟s method for fractional-order ODE running long  

 

computer simulations is a common ordeal. Time spent 

in computation of such complex dynamics is 

computationally expensive. Many strategies are being 

pursued to keep the computation time within 

reasonable but at the end of the day, the size of 

problems which can be tackled are ultimately limited 

by the capabilities of the available hardware. Hence 

such systems can be implemented on Graphics 

Processing Unit (GPU) which has the parallel 

computing power for quicker simulation. A GPU has a 

number of threads where each thread can execution 

different program. This helps us to achieve significant 

& faster computation than a normal CPU system. In 

this paper, the fractional Euler‟s method is 

implemented on GPU to achieve faster computation. 

The structure of this paper is as follows.- Section II 

gives information about Fractional Euler‟s method to 

solve FODE. The Section III describes General 

Purpose Graphics Processing Unit (GPGPU) 

technology and Parallel Computing toolbox and gives 

information about specifications of the hardware used 

and Section IV explains the design steps for the 

implementation. In Section V we presents the results 

for the FODE and Section VI concludes the work. 

 

II. FRACTIONAL EULER’S METHOD 

 

A numerical method is approximation of a solution to 

a problem with a specific numerical process with 

given initial or boundary value conditions. In this 

work, various time dependent difference equations are 

solved by using numerical methods. In numerical 

method, the differential equation is solved under a 
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continuous interval [a,T] which is divided into steps of 

size h. The difference equation having successive 

approximations yn+j is described by Lambert [7]. 

Here the values of n such as n = 0,1,...,k are used for 

the calculation of the successive parameter of the 

given sequence until we reach to the endpoint (T). In 

the numerical method, whenever the value of k is less 

than 1, we can describe it as a multistep method. The 

one-step method like Forward Euler Method can be 

represnted for k = 1. This paper is concerned with the 

numerical solution of following initial value problem 

of FDE. 

     
   ( )   (   ( ))          (1) 

Where  ( )( )    
             

Fractional Euler‟s Method is one of the integration 

method same as the classical Euler‟s method that 

convert the original fractional equation into the 

fractional integral equation. Then to solve the initial 

value problem we have to apply some numerical 

method to that equation [8]. By applying     
  on the 

both sides of eq. 1, we will get equivalent Volterra 

integral equation which is given below [9]: 
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Now, we will apply the following Euler‟s method to 

solve intitial value problem [8]. The approximation of 

      
   (   ( ))         is done by using left 

fractional rectangular formula given below [8] : 
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III. GRAPHICS PROCESSING UNIT (GPU) 

 

The graphics processing unit (GPU) has become most 

important part of todays computing techniques. Over 

the past six years, due to the development in the 

performance and capabilities of GPUs, it has become 

one of the powerful graphics engine. As GPU is a 

highly parallel programmable processor, can do faster 

calculation of computationally intensive problems than 

normal CPUs. GPU computing is the utilization of the 

GPU as a general purpose unit for solving a given 

problem. It is also known as General-Purpose 

computing on Graphics Processing Units (GPGPU) 

[14] [15]. The main objective of GPU computing is to 

achieve the highest performance over the CPU for a 

given problem by using data parallel algorithm. The 

CPU is latency optimized (minimal time to complete a 

task), whereas the GPU is throughput optimized 

(Maximum tasks per unit of time, also Bandwidth). In 

the GPU layout, where instructions are carried out in 

parallel, the largest amount of surface area is spent on 

arithmetic units (ALUs). This is the reason a GPU has 

a high computational throughput at the cost of a higher 

latency. In terms of  Flynns taxonomy [10], a CPU is a 

Single Instruction Single Data (SISD) type processor, 

whereas a GPU is would be a Single Instruction 

Multiple Data (SIMD) processor. The term Single 

Instruction Multiple Thread (SIMT) is also used. Now, 

the GPU is a highly powerful graphic engine, which is 

used as a general purpose computing processor for 

performing parallel computing and big data 

processing. Now, GPU is preferred over the CPU due 

to limitations of CPU over speed. Due to the high 

computation power and advance programmability, 

GPU has become one of the promising competitor in 

high performance computing. There are few toolboxes 

of MATLAB used for GPU computing. By means of 

these available toolboxes, MATLAB code can be 

easily executed on GPU with slight conversions in the 

existing code and least knowledge of GPU. MATLAB 

Parallel Computing Toolbox, Jacket and GPUmat are 

the commonly used toolboxes for parallel computing. 

[11]. 

 

A. GPU acceleration 

The CPU decides which is the „computationally 

intensive‟ part of the program, that is the part which 

takes large amount of calculation time and also whose 

data set can be processed in parallel. As shown in 

Fig.1, this part is then transferred to the GPU for 

accelerated parallel processing, while the rest of the 

program is executed sequentially by the CPU. The 

output data sets of the part calculated by the GPU is 

collected and transferred back to the CPU memory for 

either display or some other small calculation. 

The GPU contains hundreds or even thousand of 

discrete processing units (cores), which make it 

extremely efficient and speedy to handle compute 
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intensive code [14]. Therefore, GPU computing has 

huge potential in areas requiring processing of 

enormous amounts of data, also called Big Data [15]. 

 

 
Fig. 1. Acceleration by GPU [14] 

 

B. Parallel Computing Toolbox (PCT) 

 Parallel Computing Toolbox (PCT) allows us 

to solve computationally heavy and big data problems 

using multicore processors, GPUs and computer 

clusters. Using PCT, we can developed parallel for-

loops, special array types and parallelized numerical 

algorithms which allows us to parallelize MATLAB 

applications without CUDA or MPI programming. 

Also the simulations of multiple models can be 

performed in parallel by using the toolbox with 

Simulink [12]. Few important MATLAB functions 

which are used in GPU Computing using MATLAB 

are as follows [12] [13]: 

 

 gpuArray(): 

 It is used to build an array on GPU. 

 For Example: A = gpuArray(B) 

 gather(): 

 It is used to transfer distributed array or 

 gpuArray to 

 MATLAB local workspace. 

 For Example:X = gather(A) 

 arrayfun(): 

 It apply function to each element of array on 

 GPU. 

 For Example:A = arrayfun(FUN, B) 

 

 tic-toc command 

tic and toc functions of MATLAB work together to 

measure elapsed time. tic, by itself, saves the current 

time 

that toc uses later to measure the time elapsed between 

the two. 

 

C. HARDWARE SPECIFICATIONS 

 

We have evaluated the Fractional Euler‟s method for 

fractional order ordinary differential equations on 

GPU and compared its performance with CPU. The 

specifications of GPU are listed in Table I and CPU 

are listed in the Table II. 

 

TABLE I 

GPU SPECIFICATIONS 

Model NVIDIA Geforce 940M 

Total Graphics Memory 2048 MB 

No. of cores 384 

Clock Rate 1071 MHz 

 

TABLE II 

CPU SPECIFICATIONS 

 

Model Intel i5-5200U 

Cache 3 MB 

No. of cores 2 

Clock Rate 2.2 GHz 

 

 

IV. DESIGN STEPS FOR IMPLEMENTATION 

 

Design steps for successful implementation of 

Fractional Euler‟s method to solve FODE on GPU are 

described below.  

It contains basic 4 major steps: 

 The first phase includes choosing an appropriate 

mathematical function to implement in the 

MATLAB. Its really crucial that the functions 

that are picked are analytically clear with the 

user itself. Knowing the range of outputs plays 

an important part in rectifying the program as 

suitable. 

 The second phase includes writing the scalar 

codes for the functions. The addition, 

subtraction, multiplication or division of a matrix 

by a number is called as the scalar operation. 

These scalar operations create a new matrix 

having same number of rows and columns with 

each element of the original matrix added to, 

subtracted from, multiplied by or divided by the 
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number. These simple methods are used to 

implement our functions. 

 The third phase includes the vectorization of 

these functions. Vectorization of MATLAB code 

converts an entire array into “single ”command. 

 The condensed code to apply an action to every 

element of an array is transformed to a single 

line of code by using a “Vector ”operation in 

MATLAB. In this phase, we will vectorize our 

given functions, that is eliminating the loops that 

are present in the program without changing the 

final output. 

 Finally the vectorized code is transfered on GPU. 

The analysis of the code is done by comparing of 

time of execution when implemented on both 

GPU and CPU. The Speed up is calculated by 

using following formula: 

          
                             

                             
 

 

V. RESULTS 

 

The Fractional Euler‟s method is tested for following 

FODE on CPU and GPU and their performance 

comparison is done. Consider the following fractional 

differential equation: 

     
  ( )    ( )  

 (   )

 (   )
       ( )       

                                                                 (5) 

The eq. 5 has following exact solution 

 

 ( )        (   )                                    (6) 

Where     ( )   ∑
  

 (    )

 
     is the two-parameter 

Mittag-Leffler function. 

The parameters used for the solution of above equation 

are 

as follows: 

 α=1 

            

t = 0 : h : 1 Like 0.1, 0.001, etc. 

The analytical solution and approximate solution for 

the above example is given in Table III. Fig. 2 shows 

the superposition of graphs of exact solution given by 

eq.6 (shown in blue) with that of the numerical 

solution of the FODE solved by Forward Euler‟s 

Method for h=0.00001 (shown in red for GPU 

implementation). As the step size of eq.5 becomes 

0.00001, approximate solution becomes closer to the 

exact solution with the speedup of 2.02552 as shown 

in Table III and IV. If we further the decrease the step 

size, GPU will run faster than CPU. 

 

TABLE III 

EXACT AND APPROXIMATE SOLUTION FOR 

EQUATION 5 

 

t 
Exact 

Solution 
Approximate Solution 

  h=0.1 h=0.0001 h=0.00001 

0 0 0 0 0 

0.1 2.4755e-06 0 2.47124e-06 2.4751e-06 

0.2 3.8487e-05 5.08596e-06 3.84553e-05 3.84841e-05 

0.3 0.00019 7.20445e-05 1.91387e-04 0.000191 

0.4 0.000597 0.00031 5.97418e-04 0.00059 

0.5 0.00144 0.00089 0.00144 0.00144 

0.6 0.00297 0.00203 0.00297 0.00297 

0.7 0.005467 0.00400 0.00546 0.00546 

0.8 0.00926 0.00710 0.00926 0.00926 

0.9 0.01476 0.01172 0.01476 0.01476 

1 0.0224 0.01827 0.02239 0.0224 

 

TABLE IV 

GPU AND CPU PERFORMANCE FOR 

FORWARD EULER METHOD 

Step 

Size 

Time(sec) Speedup 

 CPU 

Implementation 

GPU 

Implementation 

CPU/GPU 

0.1 0.0071 0.0259 0.274131274 

0.0001 10.90 15.1251 0.720729119 

0.00001 972.9794 480.3588 2.0255263336 

 

VI. CONCLUSION 

 

GPU offers significant computational power for 

programmers to achieve a desired result. This 

computational of GPU is particularly effective for 

utilization of accelerating scientific prototype which 

has FODE. In this paper, both CPU and GPU 

implementation of fractional Euler‟s methods for 

FODE is presented. Among which GPU 

implementation has proved to be considerably faster 

than the serial form run on central processing unit as 

GPU architecture has huge potential to accelerate 

parallelizable portions of an algorithm. In this paper, 

we have used a simple fractional Euler‟s method for 

solving fractional differential equations having Caputo 

derivative, and from the result, it is observed that the 
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numerical solution is closer to analytical solution as 

the number of division increase i.e. step size 

decreases. From the result, we can conclud that Euler‟s 

methods can be designed to run on the CPU when the 

step size is small and on the GPU when the step size is 

large. In the fractional Euler‟s method, GPU 

computation gives good speed up with accurate result 

as we go on reducing the step size (h). 

 

 
Fig. 2. Forward Euler Method for h=0.00001 

 
Fig. 3. Forward Euler Method for h=0.00001 
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