

 98

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

Parallel Computing of Ordinary Differential

Equations
 [1]

 Pooja S. Patil,
[2]

 M. D. Patil,
[3]

Vishwesh A. Vyawahare
[1][2][3] Department of Electronics Engineering

[1][2]
Ramrao Adik Institute of Technology , Nerul, Navi Mumbai

Abstract - Numerical methods for solving fractional differential equations are computationally heavy due to the need of floating-

point operations, the non-local nature of the fractional differential operators and more importantly, the data flow inside the entire

memory system of a computer. Hence such systems can be implemented on Graphics Processing Unit (GPU) which has the parallel

computing power for quicker simulation. A GPU has a number of threads where each thread can execute different program.

MATLAB and Parallel Computing toolboxe can be used to access the computational power of GPU and MATLAB code can be

implemented on the GPU. This helps us to achieve significant & faster computation than a normal CPU system. In this paper an

attempt is made to implement numerical method for simple fractional ordinary differential equation (FODE) on a Dual Core CPU

and NVIDIA GPU. This paper presents the relative performance of a GPU v/s CPU for fractional Euler’s method to solve FODE.

From the results presented, it is observed that GPU provides two times speed up for fractional Euler’s method.

Index Terms— fractional differential equations, fractional ordinary differential equation, Graphics Processing Unit

I.INTRODUCTION

Fractional calculus is a 300 years old subject which

involves the study of ordinary differentiation and

integration to non integer order. Over the past three

decades, it has gained huge popularity and fractional

differential equations (FDEs) has been extensively

used for the description various phenomena

developing in engineering, physics and science [1].

With the rapid development of technology, the

fractional calculus gets involved in more and more

areas, especially in control theory, viscoelastic theory,

electronic chemicals fractal theory and so on [2]. For

FDEs analytical or approximate methods can be

difficult or complex to solve and thus numerical

methods are required [3]. In the past few decades,

several numerical methods have been developed for

solving FDEs such as the Legendre wavelet method,

the spectral method and quartered shifted Legendre

method based on GaussCLabatt [4].

 In [8], differential equations are among the

most important mathematical tools used in producing

models in the field of physical sciences, biological

sciences and engineering. Ordinary Differential

Equations (ODEs) can be solved by numerical

methods such as Euler‟s method, Runge Kutta

methods and the families of Adams Bashforth and

Adams Moulton methods where speed of processing is

more desirable than the accuracy [5]. Among all

numerical methods Euler‟s method has proved to be

efficient solving ODEs [6].

 In the field of numerical method such as

Euler‟s method for fractional-order ODE running long

computer simulations is a common ordeal. Time spent

in computation of such complex dynamics is

computationally expensive. Many strategies are being

pursued to keep the computation time within

reasonable but at the end of the day, the size of

problems which can be tackled are ultimately limited

by the capabilities of the available hardware. Hence

such systems can be implemented on Graphics

Processing Unit (GPU) which has the parallel

computing power for quicker simulation. A GPU has a

number of threads where each thread can execution

different program. This helps us to achieve significant

& faster computation than a normal CPU system. In

this paper, the fractional Euler‟s method is

implemented on GPU to achieve faster computation.

The structure of this paper is as follows.- Section II

gives information about Fractional Euler‟s method to

solve FODE. The Section III describes General

Purpose Graphics Processing Unit (GPGPU)

technology and Parallel Computing toolbox and gives

information about specifications of the hardware used

and Section IV explains the design steps for the

implementation. In Section V we presents the results

for the FODE and Section VI concludes the work.

II. FRACTIONAL EULER’S METHOD

A numerical method is approximation of a solution to

a problem with a specific numerical process with

given initial or boundary value conditions. In this

work, various time dependent difference equations are

solved by using numerical methods. In numerical

method, the differential equation is solved under a

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 99

continuous interval [a,T] which is divided into steps of

size h. The difference equation having successive

approximations yn+j is described by Lambert [7].

Here the values of n such as n = 0,1,...,k are used for

the calculation of the successive parameter of the

given sequence until we reach to the endpoint (T). In

the numerical method, whenever the value of k is less

than 1, we can describe it as a multistep method. The

one-step method like Forward Euler Method can be

represnted for k = 1. This paper is concerned with the

numerical solution of following initial value problem

of FDE.

 () (()) (1)

Where ()()

Fractional Euler‟s Method is one of the integration

method same as the classical Euler‟s method that

convert the original fractional equation into the

fractional integral equation. Then to solve the initial

value problem we have to apply some numerical

method to that equation [8]. By applying
 on the

both sides of eq. 1, we will get equivalent Volterra

integral equation which is given below [9]:

 () ∑

∫ ()()

 (())

 ∑

 (())

Now, we will apply the following Euler‟s method to

solve intitial value problem [8]. The approximation of

 (()) is done by using left

fractional rectangular formula given below [8] :

 () ∑

 () (3)

Where

 (
 () ()()

 ∑

()
 ∑ ()

 (4)

Where,

 ()
 ()() ()()

III. GRAPHICS PROCESSING UNIT (GPU)

The graphics processing unit (GPU) has become most

important part of todays computing techniques. Over

the past six years, due to the development in the

performance and capabilities of GPUs, it has become

one of the powerful graphics engine. As GPU is a

highly parallel programmable processor, can do faster

calculation of computationally intensive problems than

normal CPUs. GPU computing is the utilization of the

GPU as a general purpose unit for solving a given

problem. It is also known as General-Purpose

computing on Graphics Processing Units (GPGPU)

[14] [15]. The main objective of GPU computing is to

achieve the highest performance over the CPU for a

given problem by using data parallel algorithm. The

CPU is latency optimized (minimal time to complete a

task), whereas the GPU is throughput optimized

(Maximum tasks per unit of time, also Bandwidth). In

the GPU layout, where instructions are carried out in

parallel, the largest amount of surface area is spent on

arithmetic units (ALUs). This is the reason a GPU has

a high computational throughput at the cost of a higher

latency. In terms of Flynns taxonomy [10], a CPU is a

Single Instruction Single Data (SISD) type processor,

whereas a GPU is would be a Single Instruction

Multiple Data (SIMD) processor. The term Single

Instruction Multiple Thread (SIMT) is also used. Now,

the GPU is a highly powerful graphic engine, which is

used as a general purpose computing processor for

performing parallel computing and big data

processing. Now, GPU is preferred over the CPU due

to limitations of CPU over speed. Due to the high

computation power and advance programmability,

GPU has become one of the promising competitor in

high performance computing. There are few toolboxes

of MATLAB used for GPU computing. By means of

these available toolboxes, MATLAB code can be

easily executed on GPU with slight conversions in the

existing code and least knowledge of GPU. MATLAB

Parallel Computing Toolbox, Jacket and GPUmat are

the commonly used toolboxes for parallel computing.

[11].

A. GPU acceleration

The CPU decides which is the „computationally

intensive‟ part of the program, that is the part which

takes large amount of calculation time and also whose

data set can be processed in parallel. As shown in

Fig.1, this part is then transferred to the GPU for

accelerated parallel processing, while the rest of the

program is executed sequentially by the CPU. The

output data sets of the part calculated by the GPU is

collected and transferred back to the CPU memory for

either display or some other small calculation.

The GPU contains hundreds or even thousand of

discrete processing units (cores), which make it

extremely efficient and speedy to handle compute

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 100

intensive code [14]. Therefore, GPU computing has

huge potential in areas requiring processing of

enormous amounts of data, also called Big Data [15].

Fig. 1. Acceleration by GPU [14]

B. Parallel Computing Toolbox (PCT)

 Parallel Computing Toolbox (PCT) allows us

to solve computationally heavy and big data problems

using multicore processors, GPUs and computer

clusters. Using PCT, we can developed parallel for-

loops, special array types and parallelized numerical

algorithms which allows us to parallelize MATLAB

applications without CUDA or MPI programming.

Also the simulations of multiple models can be

performed in parallel by using the toolbox with

Simulink [12]. Few important MATLAB functions

which are used in GPU Computing using MATLAB

are as follows [12] [13]:

 gpuArray():

 It is used to build an array on GPU.

 For Example: A = gpuArray(B)

 gather():

 It is used to transfer distributed array or

 gpuArray to

 MATLAB local workspace.

 For Example:X = gather(A)

 arrayfun():

 It apply function to each element of array on

 GPU.

 For Example:A = arrayfun(FUN, B)

 tic-toc command

tic and toc functions of MATLAB work together to

measure elapsed time. tic, by itself, saves the current

time

that toc uses later to measure the time elapsed between

the two.

C. HARDWARE SPECIFICATIONS

We have evaluated the Fractional Euler‟s method for

fractional order ordinary differential equations on

GPU and compared its performance with CPU. The

specifications of GPU are listed in Table I and CPU

are listed in the Table II.

TABLE I

GPU SPECIFICATIONS

Model NVIDIA Geforce 940M

Total Graphics Memory 2048 MB

No. of cores 384

Clock Rate 1071 MHz

TABLE II

CPU SPECIFICATIONS

Model Intel i5-5200U

Cache 3 MB

No. of cores 2

Clock Rate 2.2 GHz

IV. DESIGN STEPS FOR IMPLEMENTATION

Design steps for successful implementation of

Fractional Euler‟s method to solve FODE on GPU are

described below.

It contains basic 4 major steps:

 The first phase includes choosing an appropriate

mathematical function to implement in the

MATLAB. Its really crucial that the functions

that are picked are analytically clear with the

user itself. Knowing the range of outputs plays

an important part in rectifying the program as

suitable.

 The second phase includes writing the scalar

codes for the functions. The addition,

subtraction, multiplication or division of a matrix

by a number is called as the scalar operation.

These scalar operations create a new matrix

having same number of rows and columns with

each element of the original matrix added to,

subtracted from, multiplied by or divided by the

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 101

number. These simple methods are used to

implement our functions.

 The third phase includes the vectorization of

these functions. Vectorization of MATLAB code

converts an entire array into “single ”command.

 The condensed code to apply an action to every

element of an array is transformed to a single

line of code by using a “Vector ”operation in

MATLAB. In this phase, we will vectorize our

given functions, that is eliminating the loops that

are present in the program without changing the

final output.

 Finally the vectorized code is transfered on GPU.

The analysis of the code is done by comparing of

time of execution when implemented on both

GPU and CPU. The Speed up is calculated by

using following formula:

V. RESULTS

The Fractional Euler‟s method is tested for following

FODE on CPU and GPU and their performance

comparison is done. Consider the following fractional

differential equation:

 () ()

 ()

 ()
 ()

 (5)

The eq. 5 has following exact solution

 () () (6)

Where () ∑

 ()

 is the two-parameter

Mittag-Leffler function.

The parameters used for the solution of above equation

are

as follows:

 α=1

t = 0 : h : 1 Like 0.1, 0.001, etc.

The analytical solution and approximate solution for

the above example is given in Table III. Fig. 2 shows

the superposition of graphs of exact solution given by

eq.6 (shown in blue) with that of the numerical

solution of the FODE solved by Forward Euler‟s

Method for h=0.00001 (shown in red for GPU

implementation). As the step size of eq.5 becomes

0.00001, approximate solution becomes closer to the

exact solution with the speedup of 2.02552 as shown

in Table III and IV. If we further the decrease the step

size, GPU will run faster than CPU.

TABLE III

EXACT AND APPROXIMATE SOLUTION FOR

EQUATION 5

t
Exact

Solution
Approximate Solution

 h=0.1 h=0.0001 h=0.00001

0 0 0 0 0

0.1 2.4755e-06 0 2.47124e-06 2.4751e-06

0.2 3.8487e-05 5.08596e-06 3.84553e-05 3.84841e-05

0.3 0.00019 7.20445e-05 1.91387e-04 0.000191

0.4 0.000597 0.00031 5.97418e-04 0.00059

0.5 0.00144 0.00089 0.00144 0.00144

0.6 0.00297 0.00203 0.00297 0.00297

0.7 0.005467 0.00400 0.00546 0.00546

0.8 0.00926 0.00710 0.00926 0.00926

0.9 0.01476 0.01172 0.01476 0.01476

1 0.0224 0.01827 0.02239 0.0224

TABLE IV

GPU AND CPU PERFORMANCE FOR

FORWARD EULER METHOD

Step

Size

Time(sec) Speedup

 CPU

Implementation

GPU

Implementation

CPU/GPU

0.1 0.0071 0.0259 0.274131274

0.0001 10.90 15.1251 0.720729119

0.00001 972.9794 480.3588 2.0255263336

VI. CONCLUSION

GPU offers significant computational power for

programmers to achieve a desired result. This

computational of GPU is particularly effective for

utilization of accelerating scientific prototype which

has FODE. In this paper, both CPU and GPU

implementation of fractional Euler‟s methods for

FODE is presented. Among which GPU

implementation has proved to be considerably faster

than the serial form run on central processing unit as

GPU architecture has huge potential to accelerate

parallelizable portions of an algorithm. In this paper,

we have used a simple fractional Euler‟s method for

solving fractional differential equations having Caputo

derivative, and from the result, it is observed that the

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 102

numerical solution is closer to analytical solution as

the number of division increase i.e. step size

decreases. From the result, we can conclud that Euler‟s

methods can be designed to run on the CPU when the

step size is small and on the GPU when the step size is

large. In the fractional Euler‟s method, GPU

computation gives good speed up with accurate result

as we go on reducing the step size (h).

Fig. 2. Forward Euler Method for h=0.00001

Fig. 3. Forward Euler Method for h=0.00001

REFERENCES

[1] Diethelm, Kai.“The analysis of fractional

differential equations: An application-oriented

exposition using differential operators of Caputo

type.”Springer, Verlag Berlin Heidelberg, 2010.

[2] Machado, J. Tenreiro, Virginia Kiryakova, and

Francesco Mainardi. “Recent history of fractional

calculus.”Communications in Nonlinear Science and

Numerical Simulation Elsevier 16, no. 3 (2011): 1140-

1153.

[3] Weilbeer, Marc.“Efficient numerical methods for

fractional differential equations and their analytical

background.”Papierflieger, 2005.

[4] ur Rehman, Mujeeb, and Rahmat Ali Khan. “The

Legendre wavelet method for solving fractional

differential equations.”Communications in Nonlinear

Science and Numerical Simulation Elsevier 16, no. 11

(2011): 4163-4173.

[5] Suh, Jung W., and Youngmin Kim.“Accelerating

MATLAB with GPU computing: A primer with

examples.”Newnes, 2013.

[6] Higham, Desmond J., Xuerong Mao, and Andrew

M. Stuart. “Strong convergence of Euler-type methods

for nonlinear stochastic differential equations.”SIAM

Journal on Numerical Analysis 40, no. 3 (2002): 1041-

1063.

[7] Lambert, John Denholm. “Numerical methods for

ordinary differential systems: the initial value

problem.”John Wiley & Sons, Inc.New York, NY,

USA, 1991.

[8] Li, Changpin, and Fanhai Zeng. “Numerical

methods for fractional calculus.”Vol. 24. CRC Press,

2015.

[9] Lubich, Ch. “A stability analysis of convolution

quadraturea for Abel- Volterra integral

equations.”IMA journal of numerical analysis 6, no. 1

(1986): 87-101. Oxford University Press

[10] Flynn, Michael J. “Some computer organizations

and their effectiveness.” IEEE transactions on

computers 100, no. 9 : 948-960, IEEE Computer

Society Washington, DC, USA, 1972.

[11] Baida Zhang, Shuai Xu, Feng Zhang, Yuan Bi

and Linqi Huang, “Accelerating MatLab code using

GPU: A review of tools and strategies”, Artificial

Intelligence, Management Science and Electronic

Commerce (AIMSEC), 2nd International Conference

on, pp. 1875-1878, IEEE, 2011.

[12] Reese, Jill, and Sarah Zaranek. “Gpu

programming in matlab.” MathWorks News & Notes.

Natick, MA: The MathWorks Inc (2012): 22-5.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 4, Issue 8, August 2017

 103

[13] Altman, Yair M.“Accelerating MATLAB

Performance: 1001 tips to speed up MATLAB

programs.”CRC Press, 2014.

[14] Lippert, Anthony. “Nvidia gpu architecture for

general purpose computing. ”NVIDIA presentation,

April (2009).

[15] Luebke, David, and M. Harris. “General-purpose

computation on graphics hardware.”In Workshop,

SIGGRAPH. 2004.

