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Abstract: - Due to the increase in the soft error rate in logic circuits, the encoder and decoder circuitry around the memory blocks 

have become susceptible to soft errors as well and must also be protected. We introduce a new approach to design fault-secure 

encoder and decoder circuitry for memory designs. Hamming codes are often used in today’s memory systems to correct single 

error and detect double errors in any memory word. In these memory architectures, only errors in the memory words are tolerated 

and there is no preparation to tolerate errors in the supporting logic (i.e. encoder and corrector). However combinational logic has 

already started showing susceptibility to soft errors, and therefore the encoder and decoder (corrector) units will no longer be 

immune from the transient faults. Therefore, protecting the memory system support logic implementation is more important. Here 

we proposed a fault tolerant memory system that tolerates multiple errors in each memory word as well as multiple errors in the 

encoder and corrector units. We illustrate using Euclidean Geometry codes and Projective Geometry codes to design the fault-

tolerant memory system, due to their well-suited characteristics for this application. 
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I. INTRODUCTION 

 

 

Electronic space provided by silicon chips (semiconductor 

memory chips) or magnetic/optical media as temporary or 

permanent storage for data and/or instructions to control a 

computer or execute one or more programs. Two main 

types of computer memory are: (1) Read only memory 

(ROM), smaller part of a computer's silicon (solid state) 

memory that is fixed in size and permanently stores 

manufacturer's instructions to run the computer when it is 

switched on. (2) Random access memory (RAM), larger 

part of a computer's memory comprising of hard disk, CD, 

DVD, floppies etc., (together called secondary storage) and 

employed in running programs and in archiving of data. 

Memory chips provide access to stored data or instructions 

that is hundreds of times faster than that provided by 

secondary storage. Particularly, we identify a class of error-

correcting codes (ECCs) that guarantees the existence of a 

simple fault-tolerant detector design. This class satisfies a 

new, restricted definition for ECCs which guarantees that 

the ECC codeword has an appropriate redundancy structure 

such that it can detect multiple errors occurring in both the 

stored codeword in memory and the surrounding circuitries. 

We call this type of error-correcting codes, fault-secure 

detector capable ECCs (FSD-ECC). The parity-check 

Matrix of an FSD-ECC has a particular structure that the 

decoder circuit, generated from the parity-check Matrix, is 

Fault-Secure. The ECCs we identify in this class are close to 

optimal in rate and distance, suggesting we can achieve this 

property without sacrificing traditional ECC metrics. We use 

the fault-secure detection unit to design a fault-tolerant 

encoder and corrector by monitoring their outputs. If a 

detector detects an error in either of these units, that unit 

must repeat the operation to generate the correct output 

vector. Using this retry technique, we can correct potential 

transient errors in the encoder and corrector outputs and 

provide a fully fault-tolerant memory system. 

 

SYSTEM OPERATION: 

LOW-density parity-check (LDPC) codes were first 

discovered by Gallager in the early 1960s [2] and have 

recently been rediscovered and generalized .It has been 

shown that these codes achieve a remarkable performance 

with iterative decoding that is very close to the Shannon 

limit[3]. Consequently, these codes have become strong 

competitors to turbo codes for error control in many 

communication and digital storage systems where high 

reliability is required.  

LDPC codes can be constructed using random or 

deterministic approaches. In this report, we focus on a class 

of LDPC codes known as Euclidean Geometric (EG) LDPC 

codes, which are constructed deterministically using the 

points and lines of a Euclidean geometry [1,16]. The EG 
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LDPC codes that we consider are cyclic and consequently 

their encoding can be efficiently implemented with linear 

shift registers. Minimum distances for EG codes are also 

reasonably good and can be derived analytically. Iteratively 

decoded EG LDPC codes also seem to not have the serious 

error- floors that plague randomly-constructed LDPC 

codes; this fact can be explained by the observation made 

in [6] that EG LDPC codes do not have pseudo-code words 

of weight smaller than their minimum distance. For these 

reasons, EG LDPC codes are good candidates for use in 

applications like optical communications that require very 

fast encoders and decoders and very low bit error-rates. 

 

EUCLIDEAN GEOMETRY CODE REVIEW 

The construction of Euclidean Geometry codes based on 

the lines and points of the corresponding finite geometries. 

Euclidean Geometry codes are also called EG-LDPC codes 

based on the fact that they are low-density parity-check 

(LDPC) codes [14]. LDPC codes have a limited number of 

1’s in each row and column of the matrix; this limit 

guarantees limited complexity in their associated detectors 

and correctors making them fast and light weight [9]. 

Let EG be a Euclidean Geometry with  n  points and  J  

lines. EG is a finite geometry that is shown to have the 

following fundamental structural properties: 

1) Every line consists of  


 points; 

2) Any two points are connected by exactly one line; 

3) Every point is intersected by 


  lines; 

4) Two lines intersect in exactly one point or they are 

parallel; i.e., they do not intersect. 

Let  H be a nJ   binary matrix, whose rows and 

columns corresponds to lines and points in an  EG 

Euclidean geometry, respectively, where 
1, jih

 if and 

only if the ith   line of EG contains the 
jth

 point of  EG, 

and 
0, jih

otherwise. 

A row in H  displays the points on a specific line of EG 

and have weight 


.A column in H displays the lines that 

intersect at a specific point in EG and have weight  


 . The 

rows of  H  are called the incidence vectors of the lines in 

EG, and the columns of H  are called the intersecting 

vectors of the points in EG. Therefore, H  is the incidence 

matrix of the lines in EG over the points in EG. It is shown 

in [15] that H  is a LDPC matrix, and therefore the code is 

an LDPC code. 

A special subclass of EG-LDPC codes, type-I 2-D EG-

LDPC, is considered here. It is shown in [15] that type-I 2-

D EG-LDPC has the following parameters for any positive 

integer 2t : 

• Information bits, 
ttk 322   ; 

• Length, 122  tn  ; 

• Minimum distance, 
12min  td

; 

• Dimensions of the parity-check matrix, nn  ; 

• Row weight of the parity-check matrix, 
t2
; 

• Column weight of the parity-check matrix, 
t2
 . 

It is important to note that the rows of  H  are not 

necessarily linearly independent, and therefore the number 

of rows do not necessarily represents the rank of the H  

matrix. The rank of H  is kn   which makes the code of 

this matrix linear code. Since the matrix is nn  , the 

implementation has n syndrome bits instead of kn  . 

The
)12()12( 22  tt

, parity-check matrix  H  of an EG 

Euclidean geometry can be formed by taking the incidence 

vector of a line in EG and its  222 t
 cyclic shifts as rows; 

therefore this code is a cyclic code. 

 

EFFICIENCY OF EG-LDPC 

It is important to compare the rate of the EG-LDPC code 

with other codes to understand if the interesting properties of 

low-density and FSD-ECC come at the expense of lower 

code rates. We compare the code rates of the EG-LDPC 

codes that we use here with an achievable code rate upper 

bound (Gilbert- Varshamov bound) and a lower bound 

(Hamming bound). The EG-LDPC codes are no larger than 

the achievable Gilbert bound for the same k and d  value 

and they are not much larger than the Hamming bounds. 

Consequently, we see that we achieve the FSD property 

without sacrificing code compactness. 

 

ENCODER 

An -bit codeword c , which encodes a k -bit information 

vector i  is generated by multiplying the k -bit information 

vector with a nk   bit generator matrix G ; i.e., Gic .  . 

EG-LDPC codes are not systematic and the information bits 

must be decoded from the encoded vector, which is not 

desirable for our fault-tolerant approach due to the further 

complication and delay that it adds to the operation. 

However, these codes are cyclic codes [1]. We used the 

procedure presented in [1] and [4] to convert the cyclic 

generator matrices to systematic generator matrices for all 

the EG-LDPC codes under consideration. 
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FAULT SECURE DETECTOR 

The core of the detector operation is to generate the 

syndrome vector, which is basically implementing the 

following vector-matrix multiplication on the received 

encoded vector c  and parity-check matrix H                                 

THcs . …………………… (1). 

Therefore each bit of the syndrome vector is the product of 

c with one row of the parity-check matrix. This product 

is a linear binary sum over digits of c where the 

corresponding digit in the matrix row is 1. This binary sum 

is implemented with an XOR gate. Fig 5 shows the detector 

circuit for the (15, 7, 5) EG-LDPC code. Since the row 

weight of the parity-check matrix is


, to generate one 

digit of the syndrome vector we need a 


-input XOR gate, 

or 
)1( 

2-input XOR gates. For the whole detector, it 

takes 
)1( n

2-input XOR gates.  

 

CORRECTOR 

One-step majority-logic correction is a fast and relatively 

compact error-correcting technique [1]. There is a limited 

class of ECCs that are one-step-majority correctable which 

include type-I two-dimensional EG-LDPC. In this section, 

we present a brief review of this correcting technique. Then 

we show the one-step majority-logic corrector for EG-

LDPC codes. 

 

ONE-STEP MAJORITY-LOGIC CORRECTOR 

One-step majority logic correction is the procedure that 

identifies the correct value of a each bit in the codeword 

directly from the received codeword; this is in contrast to 

the general message-passing error correction strategy (e.g., 

[5]) which may demand multiple iterations of error 

diagnosis and trial correction. Avoiding iteration makes the 

correction latency both small and deterministic. This 

method consists of two parts: 

1) Generating a specific set of linear sums of the received 

vector bits and 

2) Finding the majority value of the computed linear sums. 

The majority value indicates the correctness of the code-bit 

under consideration; if the majority value is 1, the bit is 

inverted, otherwise it is kept unchanged. The theory behind 

the one-step majority corrector and the proof that EG-

LDPC codes have this property are available in [1]. 

 

 

 

 

 

 

DESIGN FLOW CHART: 

 
 

 
Fig: simulation waveform for the fault secure memory 

system. 

 

II. CONCLUSION 

 

We proved that these codes are part of a new subset of ECCs 

that have FSDs. Using these FSDs we design a fault-tolerant 

encoder and corrector, where the fault-secure detector 

monitors their operation. We also presented a unified 

approach to tolerate permanent defects and transient faults. 

This unified approach reduces the area overhead. Without 

this technique to tolerate errors in the ECC logic, we would 

required reliable (and consequently lithographic scale) 

encoders and decoders. Accounting for all the above area 

overhead factors, all the codes considered here achieve 

memory density of 20 to 100 Gb/nm, for large enough 

memory (0.1 Gb). 
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