
 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 6, Issue 7, July 2019

 1

A Perspective Study on Test Case Suite Reduction

Tools of Regression Testing
[1]

Bhawna Jyoti,
[2] Dr Aman Kumar Sharma

 [1]
Computer Science Department,

Himachal Pradesh University Shimla, India

[2]
Professor, Computer Science Department, Himachal Pradesh University Shimla, India

Abstract: In Modern era, thousands of software are released during every month. Testing and validation of software is an

important activity which enhances the quality of software under test. Software testing is very expensive activity in the software

development life cycle and is used to evaluate the quality of the software. Regression testing is an activity which ensures that

changes to the existing software has not affected the normal functioning of software. This paper presents a review on regression

testing tools used in test case suite reduction techniques and describes their strengths and weaknesses. We analyses and categorizes

current reduction tools used by research community and identifying future research opportunities in this field.

Keywords - Test case suit reduction, Tools based on Random testing, Compiler testing, Integer Programming Testing and Fault-

Localization based testing.

I. INTRODUCTION

Software testing is an important activity which plays a

significant role to detect faults, errors and defects to see

whether the system produces correct output and improves

the quality of software[1][2]. It is the most expensive

practice because resources of developing and maintaining

software are related to the testing process for ensuring

quality of software [7][10][29]. In modern era, great

attention is paid on the test suite maintenance of large scale

software systems to overcome the issues of cost, size and

fault detection effectiveness of software system under

test[7][10]. As a software system spread its dimensions, its

test suites need to be updated as well as maintained to verify

new or modified functionality of the software[1][2][3][10].

Regression testing is a critical test activity that is used to

validate software changes which provides confidence that

newly introduced changes during software evolution does

not affect the normal functioning of system under

test[2][[7][10][28]. Due to time, size and resource

constraints, retesting of modified software system becomes

difficult when a new version is released [10][22]. It is really

important to search for techniques that attempts to find a

minimal subset of test cases i.e. reduced test suite that will

satisfy all testing requirements matrix similar to the original

test suite without affecting the fault revealing capabilities of

test suite [1][2][7][25][29].

Regression testing is needed whenever new requirement

arises by customer, performance and bug fixing issues,

modifications in software are introduced[2][3]. Different

techniques have been proposed by researchers to

efficiently address cost as well as fault detection rate in the

minimized test suite[1][4][5][7][8].

 All the regression test suite reduction

approaches[3][5][8][11] pays great attention on finding a

minimal test suite by permanently eliminating the redundant

test cases from the original test suite and as a affect, cost of

executing, validating test suites[7][10] over future releases

of software is significantly decreased. The test case suite

reduction technique can be considered as the minimal

hitting set problem[9][28][29] which is based on finding a

reduced subset of test cases having minimum cardinality

that satisfies all the requirements of original test suite with

retaining the powers of fault detection effectiveness[7][10].

Regression testing tools are needed when software change

takes place due to change in code, requirements and

technology [6][12]. To deal with problems of exhaustive

testing in organizational domains, optimal testing tools are

very much beneficial to find a reduced test suite by

eliminating redundant test cases in original test suite[2][12].

The rest of the paper is organized as follows: Sec 2 presents

parameters and taxonomy of Test case suite reduction tools.

In Sec 3, analysis of tools is done by comparing their

strengths and weakness and Sec 4 gives future research

issues followed by conclusion.

II. TEST SUITE REDUCTION TOOLS

A. Parameters

The test case suite reduction tools[12]are based on various

parameters which are described as under:

• Type of approach: It presents type of methodology used

by reduction framework. The methodology may be

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 6, Issue 7, July 2019

 2

Coverage based, Search based, Integer Linear Programming

Based and Data mining based [28].

• Paradigm used for testing: It tells about the supported

language like C, Java etc. in which tool is implemented in

test reduction framework [12][28].

• Type of Optimization used: There are basically two types

of optimization used in tools- single objective and multi-

objective. The single-objective based optimization type

considers single criteria may be loss in fault-detection

capability or effectiveness in terms of size of the reduced

subset. In multi-objective both reduced test suite and fault

detection effectiveness are calculated as comparison to

single-objective optimization[10][12][18][26].

• Server platform for execution of test cases: Platform for

execution of test cases may be single server and multiple

server. In case of multiple servers, divide-and-conquer

strategy is used by diving the problem into many sub-

problems and each sub-problem is executed on a single

server to reduce testing time of the reduction

process[12][28].

• Mode of computation: It is the type of computation

processing supported by a framework and may be online

and offline mode[12].

• License: It is the license of tool which may be

commercial, academic research and free open source tools.

• Customizability: It is defined as an ability of the tool to

support alterations in basic functions and it includes full,

partial and no customizability.

B. Categories of Existing frameworks of test suit

reduction tools:

1. Tools based on Random selection of elements in unit

testing:

These tools are based on randomized unit testing and are

used for generating method sequences calls based on

distinct test inputs easily and quickly from common data

structures and is very useful in exposing defects of system

under test[6][9][11][12].

ATAC: This tool is based on coverage flow based

approach[17].

Rostra: This tool is used to evaluate quality of test suite by

finding similar unit test cases of equivalent objects[20].

Source code, time and space taken to find redundant test

cases are used[12][20].

GenRed: A feedback-directed tool is used to generate

feedback by executing many randomly generated method

sequences and reduce object oriented test cases[15]. This

tool follows a sequence based test case suite reduction

technique and eliminate redundant test cases without their

execution[12][15].

RUTE-J : It uses delta debugging technique to isolate the

failure-inducing inputs of the program under test[6].

Randoop: This tool takes input as set of classes and contract

checkers and produces output as contract violating test and

regression test. It does not require pre-existing test suite and

removes the test inputs which throw exceptions or belongs

to similar object [18].

 TOBIAS: This tool is based on stochastic approach and

captures the tester knowledge to write test patterns with

manual effort. Then test patterns are unfolded to find and

eliminate redundant test cases in a test suite [12][19].

2. Tools used in Web Application Testing:

 USbRed: This tool reduces a set of recorded user session

data and focuses on coverage and fault detection capabilities

of reduced test suite in terms user recorded session data[27].

CPUT: This tool is designed to reduce the user-session

based test cases to identify faults by using execution traces.

A generalized logger is used with Apache server. This tool

uses a small sized web application[29].

3. Tools Based On Compiler testing:

This framework focus on testing the back-end of a

retargeted compiler for reducing the test suite, since the

back-end relies on the targeted processor.

RTL: Testing is done on back-end of a retargeted compiler

for intermediate testing of code and based on high level

abstraction framework for compilers. In it test generation is

based on grammar based approach[12][21].

PLOOSE: The minimal representation of intermediate

inputs by generating a number of test cases based on the

given C grammar-coverage criteria and converts these into

RTL code and optimal test suite is obtained[12][25].

4. Tools based on Integer Linear Programming:

MINTS: This tool is ILP-based, object oriented, Multi-

Objective problem domains and more effective than single

objective in terms of cost and effectiveness, defined

encoding mechanism, easily plug-in different ILP

solvers[16].

EDTSO: This tool give code coverage and minimum

energy consumption of test suites and suitable for anroid

applications. Use multiple ILP solvers in parallel fashion[4].

5. Tools based on Fault Localization: These tools are

very much beneficial as fault localization[7][10][24] is most

important and expensive activity to access the quality of

reduced test suite.

SrTC: This tool works on the uneven distribution of test

cases and a framework retained a small number of

redundant test cases to improve fault-localization

effectiveness. Reduction Processor, w Processor, and

Evaluation is used which produces five types of data[1] and

fault detection effectiveness is improved[1].

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 6, Issue 7, July 2019

 3

JINSI: This tool works on passing and failing execution of

test cases and combine delta debugging techniques with

event slicing[14].

GZoltar: This tool is used as plug-in for Eclipse IDE

environment. It is based on spectrum, cardinality and find

representative suite by determining their test execution

covering time. Visual representations of data analyzed under

tool[13] are given.

III. ANALYSIS:

Tools based on randomized unit testing[6][12][15][20] are

inefficient when there is high dimensional data of large

software systems. Tools which are mainly focused on

coverage-based approaches[3][8] exploit the coverage of a

system under test to determine the reduced suite. Existing

TSR tools mainly targeted to solve the single-objective TSR

optimization problems which is impractical for a testing

scenario containing multiple objectives and constraints. A

comparative study is done on these techniques which is

presented in tabular form i.e. Table 1.

TABLE 1: A Comparative Study on Different Test suite reduction Techniques

Category Tool

Name

Strengths Weaknesses

Tools

based on

Random

selection

ATAC Elimination of test cases is done that are

redundant. Use of data flow coverage metric and

execution slices. Coverage based approach which

follows structured testing and focus on cost in

terms of size of representative set[17].

License: Free, full customizability

Dependent very much on human interactions and needs

more testing time to create test data and their evaluation.

Whenever there is increase in program size, memory

storage of collected coverage information and management

cost is very much increased. Fault detection capability is

less as it supports only selective testing[17].

Rostra Formal Object- oriented unit testing framework

based on Java language. Coverage based and

single objective which finds similar unit test

cases based on equivalent objects[20].License:

Research

Sometimes there is possibility not to find minimal solution.

Test oracle problem. When executing source code special

attention have to pay manually because

 changes in the existing redundant code can make a test

case non-redundant in the new equivalent classes. No

customizability[20]

GenRed Object- oriented, Coverage based selection of

methods and reduction technique is based on

sequence of method calls of source code. single

objective. License: Research[15]. This tool uses

combination of code coverage based reduction

and method sequence based reductions and

provides significant improvement in test suite

minimization[12][15].

It needs good experience to handle tool for entering some

technical input of system under test[15].No

customizability[12][15].

Randoop Feedback directed mechanism based. Object-

oriented, Coverage based useful to create similar

objects or throw exceptions ,Single objective.

License: Free, full customizability[18].

Requires high human interactions to set time limits for

finding representative set and it finds small number of

redundant test cases[18]. It is based on generated feedback

and methods can be tested only if there are relevant

feedbacks[18].

TOBIAS Semi-automated based on combinatorial testing,

Object- oriented, coverage based and single

Less effective in terms of cost and effectiveness as

compared to Multi-objective criteria[19]

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 6, Issue 7, July 2019

 4

objective[19]License: Research[19]

Open-

SourceRe

d

Two open source components: Proteja and

Modificare Search and coverage based, object

oriented and single objective

License: Free, full customizability

Need high user experience regarding tool[26]

TEMSA Multi-objective using feature coverage and

search based .It generates minimized test

suite[22].License: Research

It may be very time consuming in case of evaluating fitness

function followed by different possible candidate

solutions[22]. No customizability.

Raspect Requires less manual code inspection, Aspect

oriented, Coverage based, Single

objective[9],License: Research

Performance degraded as it is extension of Rostra in case

of non availability of algebraic expressions of program[9]

RUTE-J Coverage based, single objective and object

oriented[12]License: Free, full customizability

Requires high human interactions to enter some technical

inputs[12].

Tools

used in

Web

Applicati

on testing

USbRed Reduce user session data, Concept analysis

based, Object oriented and Single objective.

License: Research[27].

Not adequate for capturing of execution traces, limited

code coverage because it needs particular for given

program paths. User session data will become invalid if

there is small modifications in web applications. No

customizability[27].

CPUT A general tool to test small web applications, use

black box testing method so cost effective in

comparison to coverage based techniques[29].

Limited code coverage by tool as particular type of input is

required for exercising certain paths of a program[29].

Tools

based on

Compiler

Testing

RTL Testing is done on back-end of a retargeted

compiler for intermediate testing of code. In it

test generation is based on grammar based

approach[21].

This tool is not suitable for large scale applications[21].

PLOOSE Extension of RTL tool. In it , test generations are

based on C grammar coverage and converts tests

into RTL code by using translator and then

eliminate redundant test[25].

It needs to be enhanced to support new test suite reduction

techniques[25].

Tools

based on

Integer

Linear

Program

ming

MINTS ILP-based, Object oriented, Multi-Objective

problem domains and more effective than single

objective in terms of cost and effectiveness,

defined encoding mechanism, easily plug-in

different ILP solvers[16]. Reduced computational

time[16].License: Free

Very effective but fully dependent on expertise in testing

field. Non-availability of historical data can lead to

difficulty in finding optimal solution[16].

EDTSO This tool give code coverage and minimum

energy consumption of test suites and suitable for

anroid applications. Use multiple ILP solvers in

parallel fashion[4].

For execution of test cases, high time and memory

complexity is needed[4].

Tools

Based on

Fault

SrTC This tool gives concept of relative redundancy

and fault detection effectiveness is significantly

improved[1].

Consider coverage information instead of concrete path

and may remove test cases which are relevant and thus

provide less fault-detection effectiveness[1].

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 6, Issue 7, July 2019

 5

Localizati

on

JINSI This tool works on passing and failing execution

of test cases and combine delta debugging

techniques with event slicing[14]

No visual representations of report[14] as is given by

GZoltar.

 GZoltar Used as plug-in for Eclipse IDE environment.

Based on spectrum based, cardinality and find

representative suite by determining their test

execution covering time. Give visual

representations of data analyzed under tool[13]

Only limited customizability[13]

IV. CONCLUSION AND FUTURE WORK

Tools are mainly based on Coverage code methodologies to

determine the reduced test case suite, which seldom

emphasis on fault-detection effectiveness[1][7][25][27].

Alternatively, by injecting the diversity in test cases, the

search based approaches explore significant potential to

detect real faults. Most of the existing reduction tools

mainly targeted to solve optimization problems having

single objectives but impractical platform for testing under

Multi-objective scenario. More attention can be paid on

Multi-objective based optimization problems for achieving

better cost effectiveness and fault detection capability of

system under test. The Hybrid solutions are required to be

formulated and augmented with existing tools to target

Multi-objective optimization problems. Focus is needed to

be paid on similarity based reduction techniques to obtain

optimal solutions by focusing on automation tool support to

efficiently work with Multi-objective and multi -server test

suite reduction problems[30][31].

REFERENCES

1. X. Zhang , Gu, Q., Chen, X., J. Qi and D. Chen, “A

study of relative redundancy in test-suite reduction while

retaining or improving fault-localization effectiveness,” in

Proceedings of the ACM Symposium on Applied

Computing (SAC'10), Switzerland: ACM, 2229-2236,

2010.

2. Singh, Rajvir and Mamta Santosh, “Test case

Minimisation techniques: a review,” International Journal of

Engineering Research and Technology, vol 2, no. 12, 2013.

3. S. U. R. Khan and A. Nadeem, “TestFilter : A

Statement Coverage based Test case Reduction Technique,”

in Proceedings of international Multitopic Conference,

IEEE, Dec 2006.

4. D. Li, Y. Jin, C. Sahin, J. Clause,& W.G.

Halfond, “Integrated energy-directed test suite

optimization,” Proceedings of the ACM International

Symposium on Software Testing and Analysis (ISSTA'14),

339-350, 2014.

5. A. Emilia ,V. B. Coutinho, E. G. Cartaxo, D. L.

Patrica , Machado, “ Test Suit Reduction Based on

similarity of test cases,” Software Quality Journal, vol

24,no. 2, June 2016.

6. J. H. Andrews, S. Haldar, Y. Lei and F. C. H. Li,

“Tool support for randomized unit testing,” Proceedings of

the First ACM International Workshop on Random Testing,

pp. 36-45,2006.

7. A G. Rothermel, M. J. Harrold, J. Ostrin and C.

Hong, “An Empirical Study of the Effects of Minimization

on the Fault Detection Capabilities of Test Suites,”

Proceedings of the International Conference on Software

Maintenance, Washington, D.C., November, 1998.

8. D. Hao, L. Zhang, “On demand test suit reduction,”

ICSE, 2012.

9. T. Xie, J. Zhao, D. Marinov and D. Notkin,

“Detecting Redundant Unit Tests for AspectJ Programs,”

Technical Report , UW-CSE-04-10-03,October 2004.

10. A. B. Taha, S.M. Thebaut, S.S. Liu, “An Approach

to software fault localization and revalidation based on

incremental data flow analysis,” Proceedings of the

international Computer Software and Applications

Conference, IEEE Computer Society Press,1989,527-584.

11. Y. Lei and J. H. Andrews, “Minimization of

Randomized Unit Test Cases,” Proceedings of the 16th

IEEE International Symposium on Software Reliability

Engineering, 2005.

12. S. U. R .Khan, S. P. Lee, R .W. Ahmad, A.

Akhunzada and V. Chang, “A Survey on Test Suite

Reduction Frameworks and Tools,” International Journal of

Information Management, vol. 36 ,no. 6, pp. 963-975, 2016.

13. J. Campos, A. Riboira, A. Perez and R. Abreu,

“GZoltar: An Eclipse Plug-In for Testing and Debugging,”

Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering,2012.

14. M. Burger and A. Zellar, “Minimizing

reproduction of software failures,” in Proceedings of the

2011 ACM International Symposium on Software Testing

and Analysis (ISSTA'11), pp. 221-231, 2011.

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication

Engineering (IJERECE)

Vol 6, Issue 7, July 2019

 6

15. H. Jaygarl, Kai-Shin Lu, C. K. Chang, “GenRed: A

Tool for Generating and Reducing Object-Oriented Test

Cases,” in IEEE 34th Annual Computer Software and

applications Conference, Dec 2010.

16. H. Hsu, A. Arso, “MINTS: A general framework

and tool,” IEEE publications, in Proceedings of the 31st

IEEE International Conference on Software Engineering

(ICSE'09) pp. 419-429, 2019.

17. J. R. Horgan and S. London, “A data flow

coverage testing tool for C,” Proceedings of the Second

IEEE Symposium on Assessment of Quality Software

Development Tools, pp. 2-10, 1992.

18. C. Pacheco, and M. D Ernst, “Randoop :

feedback-directed random testing for Java,” Proceedings of

the 22nd ACM SIGPLAN Conference on Object-Oriented

Programming Systems and Applications Companion, pp.

815-816, 2007.

19. F. Dadeau, Y. Ledru, L. D. Bousquet, “Directed

random reduction of combinatorial test suites,” in

Proceedings of the 2nd International Workshop on Random

Testing: co-located with the 22nd IEEE/ACM International

Conference on Automated Software Engineering (ASE'07),

ACM, pp.18-25, 2007.

20. T. Xie, D. Marinov, & D. Notkin, “Rostra: A

framework for detecting redundant object-oriented unit

tests,” in Proceedings of the 19th IEEE International

Conference on Automated Software Engineering (ASE'04),

pp. 196-205, 2004.

21. G. Woo, H. S. Chae and H. Jang, “An intermediate

representation approach to reducing test suites for retargeted

compilers,” In Reliable Software Technologies–Ada

Europe, Springer Berlin Heidelberg, 2007.

22. S. Wang, S. Ali and A. Gotlieb, “Cost-effective test

suite minimization in product lines using search

techniques,” Journal of Systems and Software, 103, 370-

391, 2015.

23. Y. Huang, L. Lu , “A methodology for test suit

reduction in user-session-based testing,” in IEEE Fifth

International Conference on Bio-Inspired Computing:

Theories and Applications, pp. 23-26 Sept. 2010.

24. P. Velmurugan, R. P. Mohapatra, “Effective Test

Case Minimization and Fault Detection Capability Using

Multiple Coverage Technique,” in International Journal of

Applied Engineering Research, ISSN 0973-4562, vol 11, no

8, pp 5389-5394, 2016.

25. H. S. Chae, G. Woo, T. Y. Kim, J. H. Bae,& W. Y.

KIM, “An automated approach to reducing test suites for

testing retargeted C compilers for embedded systems,” in

Journal of Systems and Software, pp. 2053-2064, 2011.

26. X. Wang, S. Jiang, P. Gao, X. Ju, R. Wang, Y.

Zhang, “Distance-based Test-Suite Reduction for Efficient

Testing-based Fault Localization”, International Conference

on Software Analysis, Testing and Evolution,2016.

27. S. Sampath, S. Sprenkle, E. Gibson, L. Pollock

and A. S. Greenwald, “Applying concept analysis to user-

session-based testing of web applications,” IEEE

Transactions on Software Engineering, vol 33, pp. 643-658,

2007.

28. S. Yoo and M. Harman, “Regression Testing

Minimisation, Selection and Prioritization: A Survey,” in

Software testing verification and reliability, 2007.

29. S. Sampath , R. C. Bryce , S. Jain and S.

Manchester, “A tool for combination-based prioritization

and reduction of user-session-based test suites,” Proceedings

of the 27th IEEE International Conference on Software

Maintenance (ICSM'11), pp. 574-577, 2011.

30. S. Yoo and M. Harman, “Pareto efficient multi-

objective test case selection,” in Proceedings of the

International Symposium on Software Testing and Analysis

(ISSTA'07), ACM, pp. 140-150,2007.

31. J. M. Kauffman and G. M. Kaphammer, “ A

framework to support research in and encourage industrial

adoption of regression testing techniques,” in Proceedings

of the Fifth IEEE International Conference on Software

Testing, Verification and Validation (ICST'12), pp. 907-

908, 2012.

