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Abstract: A path planning controller of a mobile robot is very critical considering the fact that the robot navigation should happen 

reaching the target without hitting the obstacles. But the complexity of the task drastically varies with the type of environment 

through which the robot navigates. In certain environments like airports, shopping complex, bus terminals etc. the environment is 

so dynamic such that the robot navigation done by different path planning approaches which works well in static environments 

won’t be suitable for these dynamic applications. In this paper a path planning controller for collision avoidance and goal seeking 

of a mobile robot is presented utilizing deep Q reinforcement learning algorithm. A dynamic environment is created using Robot 

operating system Gazebo simulator and one of the most popular open source robot Turtlebot3 is used for simulation. The hyper-

parameters are selected in such a way that the reinforcement learning path planner will train the robot to form a policy which will 

maximize the reward function. A hardware model also developed utilizing ultrasonic sensors for obstacle avoidance and UWB 

technology for localization and goal tracking. Similar results are obtained from the hardware model also when it is trained using 

the path planner. 
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INTRODUCTION 

 

Over the course of time several path planning 

algorithms were proposed for robots in dynamic 

environments. Some of them are based on algorithms 

such as Bug algorithm ,potential fields algorithm and A* 

algorithm with multiresolution grids [1].Even though 

these algorithms can be used for path planning 

applications to an extent these methods inherently possess 

many drawbacks such as Bug algorithm or its modified 

versions are based on the binary methods, also in order to 

avoid collisions they tends to make larger radius than the 

usual.  Bug algorithms always follow direct path towards 

the goal and on the way whenever they are encountered 

with obstacles, they tend to turn around the obstacles in 

the same direction. One of its modified versions uses the 

technique to follow a tangential path towards the nearest 

obstacle and follow the standard bug algorithm as usual.  

For finding the side of the tangential path with respect to 

the obstacle the tangent which forms shortest area is 

selected.  Similarly A* algorithms which is based on the 

concept of representing environment as a grid and is 

divided in to nodes or pixels, the approach is to find the 

optimal path between the nodes sounds good on theory  

 

but the computational requirement is so high as the 

number of cells in the grid increasing or resolution of 

images used to represent the environment is very less 

leading to more processing time and collision.  In 

potential field algorithm the robot moves similar to the 

case of other force fields such that it directed towards the 

goal and is repelled in the vicinity of obstacles.  The 

potential field forces must be set in order to find the 

optimal path is one of the main disadvantages of this 

method. Several deterministic and probabilistic 

algorithms are also available for path planning [2-5]. 

Dijkstra, Visibility Graph, PRM, L-PRM, RRT, and B-

RRT are some examples of these algorithms. Which can 

be used for very specific applications only. 

In Reinforcement learning according to the 

environment the learner will take actions in such a way 

that to maximize the reward function.  There are several 

reinforcement learning algorithms are proposed in 

dynamic environment [6]. Some improvements are 

proposed in traditional RL to make robotic navigation 

more efficient such as implementation of a forgetting 

mechanism, hierarchical structuring of reinforcement 

learning agent.  Another method for robotic navigation is 

also proposed which is purely based on sensor data 
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instead of relying on spatial mapping information [7]. 

From the dynamics of the sensor data the robot will form 

a reward policy which will find the places where the robot 

may navigate in future. Since the robot is relaying only on 

sensor data the path formed may not be accurate and it 

will not lead to goal tracking also.  In another method two 

modules are trained separately and combined together 

using a switching function which will activate one module 

at a time one for obstacle avoidance and another for goal 

tracking [8] 

Some significant works are also available with respect 

to q learning and deep q-learning [9-12], which is the 

reinforcement learning method used in this work.  In 

order to improve the q learning method a multi q-table for 

q-learning is suggested [9] in some of the works which 

will creates a new q table whenever a sub goal is 

obtained.  For avoiding overestimation of discounted 

rewards concepts of approximation spaces also included 

in some of the improvements proposed [10] 

For localization and mapping of the environment there 

are several methods are available particularly SLAM is 

the prevalent one. In one of the comparative studies 

conducted between SLAM and UWB technology [13] 

there are several advantages are there with UWB 

technology due to its high bandwidth and its Time of 

Arrival method than recursively calculating pose and 

orientation done by SLAM. 

In this paper we focused on Deep Q reinforcement 

learning algorithm for dynamic obstacle avoidance and 

goal tracking. A dynamic environment is created using 

Gazebo simulator of Robot operating system and one of 

the most popular open source robot TurtleBot3 is used for 

simulation in the created environment. Section II of the 

paper explains basic theory behind the paper which 

explained in separate subheadings and in Section III 

involves explanation of simulation model in Gazebo 

environment. Section IV involves how the experiment 

setup recreated with fabrication model and Section V 

explains results and observations obtained from these 

experiments. Section VI includes conclusions and future 

scope of this paper. 

 

II. BASIC THEORY 

 

A. Reinforcement Learning 

In reinforcement learning the learner will discover the 

proper actions corresponding to various situations in order 

to maximize the reward function so that the learner is 

learning by itself what to do and what not to do. So, the 

actions are not only affecting the immediate rewards but 

also it will affect next states and the upcoming rewards. 

Reinforcement learning is very much different from 

supervised learning and unsupervised learning categories 

of machine learning, because in supervised learning there 

is a knowledgeable supervisor is required for labelling the 

training set and unsupervised learning is finding the 

hidden structure of the unlabeled data. Even though like 

unsupervised learning it does not require a knowledgeable 

supervisor it differs because of the fact that reinforcement 

learning trying to maximize the reward function instead of 

finding the hidden structure in the data. Along with agent 

and environment there are other four important terms 

associated with RL they are policy, reward, value function 

and model. Policies are the core of RL agent because it 

maps what actions to be taken in each state. In each 

iteration or each step, the environment responds back to 

the system with a number called the reward. Over the 

course of training the agent will try to maximize its 

reward received from the environment. Value function 

defines how much reward the agent can accumulate in the 

long run starting from the initialization. If we require 

planning to solve RL related problems then the method is 

known as model-based methods and instead if it uses trial 

and error scenarios then that method is known as model 

free method. There are several algorithms are available 

for RL and in this work Deep Q learning which is coming 

under the category of Temporal Difference learning has 

been used. 

 

B. Temporal Difference Learning 

Temporal difference learning is a combination of two 

of the most important ideas or methods used in RL such 

as Monte Carlo methods (MC) and Dynamic 

programming (DP). Similar to Monte Carlo methods TD 

learning can also estimate the policy without the dynamic 

model of the environment and similar to Dynamic 

programming without getting the final outcome they 

update their estimates from the previous estimates they 

already learned. There are advantages of TD learning over 

the other two and that’s why TD algorithms are very 

much suitable for mobile robot application. In MC 

methods agent has to wait for an episode to end in order 

to get the returns but in TD only one-time step wait is 

required. Because it will be an important consideration 
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when some episodes take more time to finish. When 

comparing with DP it does not require a model of the 

environment to learn. These combined advantages make 

TD method is very much appropriate for path planning.  

 

C. Q- Learning 

Q learning is one of the off-policy TD algorithms in 

which the action-value function directly approximates the 

optimal action-value function, independent of the policy 

being followed (Watkins, 1989). Hence it simplifies the 

algorithm and converges faster. The policy determines 

which are the state-action pairs being updated. Q-learning 

has several variants and if it uses any convolutional neural 

network then it is known as deep q neural network. But 

when we use nonlinear functions to approximate Q value, 

it may not be stable and not very easy to converge. But 

when we use an experience replay technique then instead 

of looking for most recent actions to proceed it uses 

random sample of prior actions so it avoids correlations in 

the observation sequence and smoothens the changes in 

our data distribution. It is first patented by Google 

DeepMind to play Atari games with nearly super human 

power. 

 

D. Robot Operating System  

Robot operating system is a very important framework 

for various robotic applications. It consists of a number of 

inter connected nodes that passes messages in between. 

ROS consists of a number of tools such as MoveIt, 

Gazebo etc. and a number of libraries that simplifies 

complex robotic tasks. ROS software modules can be 

written in any programming languages such as C, CPP, 

Python, and Java are some among them. ROS consists of 

several nodes (individual programs) and edges (message 

streams) for communicating between these nodes. 

Roscore is the service that facilitates the connection 

between the nodes. There is a publisher-subscriber model 

between the nodes and each node connects to roscore to 

provide details about the message streams they want to 

pass in this publisher-subscriber peer to peer connection. 

There are thousands of ROS packages available as open 

source (a combination of codes, data and its 

documentation) makes the usage of ROS very effectively. 

 

E. Gazebo Simulator 

Gazebo is one of the most widely used robotic 

simulator by the robotics community because of its open 

source availability and compatible with ROS. Gazebo can 

be used for Dynamic simulation. Initially it supported 

only Open Dynamics engine but in newer versions it 

supports various physical engines (Bullet, Simbody, 

DART etc.). For 3D graphics it uses open source graphics 

rendering engine which supports light, shadow etc. 

Gazebo simulator supports various sensors and plugins. 

Very commonly used Laser scanner, 2D/3D camera, 

Depth camera, various contact sensors all can be 

integrated with gazebo. Plug-ins can be created or 

commonly used plug-ins are supported in gazebo. Other 

supported features include TCP/IP data transmission, 

Cloud simulation and command line tool supports both 

GUI and CUI.  

 

F. Turtlebot 

Turtlebot is a widely used mobile robot for education 

and research purpose. It is cheaper and easy to build and 

comes with open source software. Various Turtlebot 

versions have been deployed over the years namely 

Turtlebot1, Turtlebot2 and Turtlebot3. Their plugins are 

commonly used for simulation purpose. Turtlebot consists 

of a robot base, distance sensor and associated controls. 

Turtlebot3 is an advanced version over its predecessors by 

having a Dynamixel actuator. It is a single module 

consists of controller, sensor, motor etc. all are integrated 

together.    

  

III. MODEL SIMULATION IN GAZEBO 

ENVIRONMENT 

 

For simulating the robot motion in static and dynamic 

environment in gazebo simulator suitable worlds are 

created. A world with only walls, partition and corners 

used for static obstacle avoidance. A world with moving 

cylinders and static walls is used for dynamic obstacle 

avoidance. While creating the world pose, dimensions, 

Material and collision details of each of the cylinders and 

other components are given. Physics type and velocity 

constrains are provided for the cylinders such that its 

motion is defined in the environment. Launch files are 

created for launching the world in gazebo.  

Setting the parameters are the first step towards deep Q 

reinforcement learning. The parameter used in the DQN 

networks are given as in the table given below 
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TABLE 1 
Sl 

No 
Hyperparameters Value 

1 Time step of one episode 6000 

2 
Update rate of network 2000 

3 Discount factor 0.99 

4 Learning rate 0.00025 

5 Epsilon  1.0 

6 Epsilon decay  0.99 

7 Minimum of epsilon 0.05 

8 Sample batch size 64 

9 
Train start size 64 

10 Replay memory  1000000 

 

 

Turtlebot3 is available with different models such as 

burger, waffle etc. Xacro files of any of the turtlebot3 

configuration can be used for training. Files required for 

turtlebot navigation should install prior to loading of the 

environment. For training the neural network Tensorflow 

and Keras are used. In deep Q reinforcement learning the 

agent is trained in such a way that goal position should be 

reached after avoiding obstacles. Whenever it reaches its 

goal position a big positive reward is provided and when 

it hits an obstacle a big negative reward is provided. The 

episode ends when the agent reaches the goal or hits the 

obstacle or after the maximum time limit given to each 

episode.    

After setting the hyperparameters states of the 

reinforcement agent has been set. State is the current 

position of the mobile robot in the environment. 

Visualization of laser data (LDS) and localization gives 

the current state of the robot. State size of turtlebot can be 

changed to suitable value from the default state size. 

Action definition is very much critical in deep Q learning. 

There are five actions corresponds to five angular 

velocities of the motor for straight motion, turns with 

smaller and larger angular velocity in both the direction. 

Set reward function is very important in any 

reinforcement learning. Here for collision the reward 

given as -150 and for reaching the goal the reward given 

as + 200.   

 

 

A. Hyperparameters 

• Episode step: It is the time step required for one 

episode 

• Update rate: It is the update rate of target network 

• Discount factor: It represents the reduction in value of 

each events according to how far they are from the current 

value. 

• Learning rate: It is the rate with which the learning 

takes place. 

• Epsilon: It is the probability of choosing a random 

action 

• Epsilon decay: It is the rate at which the epsilon 

decays as the episodes progress 

• Epsilon minimum: It is the minimum of epsilon value 

• Sample Batch size: It is the size of the group 

containing training samples. 

•  Train start size: It is the minimum memory size 

required to start the training. 

• Replay memory: It is the size of replay memory 

 

B. Environments used for training 

During the training stage the static environment (fig. 1) 

made with many curves and turns which makes it hard to 

learn in the environment. Turtlebot2 is also tried in static 

environment for a comparison purpose. Dynamic 

environment is a combination of static and dynamic 

obstacles hence it is also hard to learn for the agent and 

makes the training more efficient. 

 

 

 
Fig. 1. Static environment 
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Fig. 2. Dynamic environment 

 

IV. HARDWARE MODEL 

 

For testing the simulation results in real world, a 

hardware model has been created. For reducing the cost 

and at the same time in order to meet the strength 

requirements robot body has been made using the PMMA 

plastic. Laser cutter is used to cut the PMMA plastic sheet 

in to required dimension. Differential driven mobile robot 

is made using two of the SPG30E-20K DC Geared Motor 

with encoder and a caster wheel is used for support. 

L293D motor driver is used for driving both the motors. 

Five ultrasonic sensors (HC-SR04) are used for finding 

the distance with the obstacles. Ultrasonic sensors are 

used for getting the distance information because it is 

cheap and easy to integrate with ROS. DWM 1000 

modules are used for real time localization system. Three 

anchors and one tag are used for finding the real time 

position. Time taken by the UWB signal to pass between 

anchor and tag is calculated using the time of flight (TOF) 

method. Rasberry pi B3 with ubuntu mate 18.04  

OS with ROS Melodic installed is used for sending the 

data between mobile robot and laptop in real time. Ubuntu 

18.04 with ROS melodic installed in the laptop and 

Rasberry pi communicates each other using the client 

server model. Motor controls are the actions provided as 

the outputs of the reinforcement algorithm. After 

successful completion of training hardware model also 

gave similar results that are obtained from the simulation 

model.  

V. RESULTS AND OBSERVATIONS 

After training the robot in the dynamic environment for 

more than 3000 episodes the robot is able to track the goal 

while successfully avoiding dynamic obstacles. For an 

unknown goal position once the robot reaches the goal x-

y co-ordinates of the point, number of episodes are 

displayed in terminal (fig. 3). Action state with current 

reward and total reward also displayed (fig. 4).  

 

 
Fig. 3. Terminal display 

 

 
Fig. 4. Action state 

A graph is plotted between total reward/Avg maximum 

Q value Vs number of episodes (fig. 5) 
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Fig. 5. Total reward/Avg max Q value Vs Episodes 

graph 

 

VI. CONCLUSIONS AND FUTURE SCOPE 

The reinforcement module which is trained in the 

dynamic environment can be used in other complex 

environments like museums, malls, Airports etc. As a 

future work multi agents can be tried with the same 

algorithm and more advanced or different existing 

reinforcement algorithms can be tried for fulfilling the 

same objectives achieved in this paper. 
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