
 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 9, Issue 11, November 2022

6

A Dynamic and Effective Load Balancing Method

using Horizontal Virtual Machine Scaling
[1] Athokpam Bikramjit*, [2] Dr Rio D’souza

[1][2] St Joseph Engineering College, Dakshina Kannada, Karnataka, India

Email: bikramjits@sjec.ac.in

Abstract— The infrastructure, software, or platform made available over a network is known as cloud computing. Utilizing

virtualization techniques to effectively manage and create virtual machines is the expected norm for cloud computing. Recently, user

demand for various services has been expanding dramatically in the field of cloud computing in direct proportion to the number of users.

As a result, load balancing has become one of the most sought-after study fields for effectively managing the demand for resources. In

this area of work, many algorithms have already been suggested. In this research, we suggest and put into practice two ways for

balancing the load of virtual machines.

Index Terms— Cloud Computing, Load Balance, Virtualization, Virtual Machine

I. INTRODUCTION

With the use of cloud computing technologies, IT

infrastructure, platform, and applications are made available

as network/internet services that are dynamically expandable

and metered. According to Singh et al. (2017a), the cloud

primarily offers three service types: software as a service

(SaaS), platform as a service (PaaS), and infrastructure as a

service (IaaS). According to the architectural design, cloud

computing is divided into four categories: private, public,

hybrid, and community [Singh et al.,(2017b)].

Virtualization is an important aspect in cloud system. A

single system can be virtualized into many numbers of virtual

systems through virtualization. Virtual Machine (VM) is

software implementation of any physical resource [Singh et

al,(2017c)]. Hypervisor (low level program or a firmware) is

solely responsible for sharing physical instance on cloud

among many tenants [Celestia(2016)]. Virtualization can be

classified broadly into two types or categories i.e. Container

based (at OS level) and Hypervisor based (at hardware level).

Key benefits of virtualization techniques are effective

resource management, server merging, energy preservation

and fewer space requirements. Instantaneous usage of data in

virtualization is a major shortcoming towards data security.

II. LOAD BALANCING ON CLOUD

Architecture of cloud systems is both, distributed and

parallel. Services and resources are evenly distributed in the

topographical area but due to reasons such as randomness,

there are possibilities of uneven distribution in cloud

environment. This may lead into disparity i.e. under load and

overload on the processor. That is the reason why load

balancing comes into the picture and it helps in distributing

the resources or services evenly across the cloud.

In VM, main objective is to balance the load and transfer

the overloaded machines to free or unload VM’s [Singh et

al,(2017c)]. In addition to this, there are several other

objectives such as optimization, throughput, and response

time. Load balancing mainly classifies into two, namely:

static and dynamic [Singh et al,(2017a)]. In static, prior

knowledge of resources or tasks is known so it is simple to

design. These type of approaches can be applied when the

processing capacity of the host in the cluster are same.

Dynamic algorithms are reliable, flexible and huge number of

request can be easily handled. It is self-adaptive and

agreements among the cloudlets request which usually create

different workloads, which are often not that easy to predict.

III. FUNDAMENTAL LOAD BALANCING

ALGORITHMS

The ultimate goal of cloud service provider is designing of

efficient load balancing policies and to increase the resource

utilization. Using scheduling algorithms in VMs, in virtual

environment, we can effectively allocate the resources to the

VM’s whenever it is required. Typical VM load scheduling

operation is to allocate the request to VM whenever the user

requests for it. Various VM’s have been projected and are

discussed here. Following are some of the load balancing

algorithms [Nayak and patel (2015)][Kumar and

Prashar(2015)].

3.1 Round Robin VM Load Balancing

It is very modest and this load balancing algorithm

distributes the newly coming cloudlets to the existing VM in

a circular fashion. Drawback is prior information of end user

task and resource availability in system as well as instating

nous state information is not considered.

3.2 Throttled VM Load Balancing

It is a dynamic method and user requests are sent to DCC

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 9, Issue 11, November 2022

7

(Data Centre Controller). DCC requests VM load balancer in

decision making process of allocating suitable virtual

machines. It works by keeping VM list along with status.

Whenever appropriate VM is discovered, the algorithm

responds to cloudlet request and gives allocation request to

virtual machine. Else, cloudlet request will be waiting until it

gets a suitable VM. One of the best approaches for load

balancing is when it preserves the present state of VM’s.

Main disadvantage of this approach is that DCC would need

to agree on same hardware agreement [Nayak and patel

(2015)].

3.3 ESCE VM Load Balancing

Equally Spread Current Execution (ESCE) is an active

algorithm built on spread spectrum mechanism [Kumar and

Prashar(2015)]. It works by equally distributing workload in

VM of data center. It maintains a job queue in VM list and

allocates if it can find some free VM and if notices many

VM’s over loaded, it transfers some load to free, idle or less

loaded VM’s. The major disadvantage here is, it’s very high

computational overhead.

IV. RELATED WORK

[Somani R, et al,(2015)] performance of hybrid method for

balancing workload between VMs, shows better results in

comparison to the methods discussed above. [Mohapatra S, et

al(2013)] executed some algorithms namely Round Robin,

Throttled, ESCE, FCFS and shows that Round Robin is best

in terms of performance. S Kumar et al, executed load

distributed algorithms between VM’s by considering least

regularly used VM’s and this algorithm beats the algorithms

listed above. [Jinhua hu et al(2010)], gives insight of

effective utilization of VM’s.

V. METHODOLOGY

The major goal of our work is to provide an effective and

dynamic load balancing algorithm for the cloud environment

that can balance the load by dynamically constructing VMs

while taking the arrival of cloudlets into account. At

predetermined times, cloudlets are generated and sent to the

broker. The Horizontal Virtual Machine Scaling (HVMS)

technique is the load balancing algorithm that is suggested. In

this method, a scaling mechanism is installed on each newly

generated virtual machine and monitored at regular intervals

to determine if it is overloaded or not. A scaling (up/down)

choice is then made based on that information. In this case,

the data broker is in charge of scaling, and the datacenter

broker establishes the amount of time the broker must wait

before destroying or creating VMs. If a time is not given, the

broker simply destroys VMs once all cloudlets that are

currently operating have completed their operations or if no

cloudlet is waiting to be created.

5.1 Pseudo Code

Step 1: Horizontal scaling mechanism dynamically creates

VM’s according to the arrival of cloudlets

Step 2: If number of cloudlets is more in existing VM’s,

create new VM’s to balance the load

Step 3: Scaling is performed by creating or destroying

VM’s, whenever necessary

Step 4: When VM’s become under loaded, they are

destroyed after the complete execution of cloudlets present in

it

Step 5: Create VM’s, when the load balancer detects the

current brokers VM’s are overloaded.

Step 6: Repeat Step 3, if the load in the system is not

balanced

5.2 Algorithm

Step 1: Create Class for HorizontalVmScaling

SET interval in which the Datacenter will schedule events

SET interval to request the creation of new Cloudlets

SET HOSTS Value

SET HOST_PES

SET VMS

SET CLOUDLETS

Step 2: Create DatacenterBroker with HostList, vmList

and Cloudlets

Create CLOUDLETS_LENGHT of variable length in the

form of list Assign random value to

CLOUDLETS_LENGHT

Step 3: Build simulation scenario and start simulation

Remove the seed parameter to get a dynamic one, based on

current computer time

Define the Vm Destruction Delay Function

Create new Cloudlets at every second, up to some a certain

time interval

Call methods every time the simulation clock advances

Record the information about the OnClockTick event

Step 4: Create a Datacenter and its Hosts with scheduling

intervals

Step 5: Create a list of initial VM’s in which each VM is

able to scale horizontally when it is overloaded

Notify number of VM’s to create

Return the list of scalable VM’s

Step 6: Create parameter of VM for which the Horizontal

Scaling will be created

Check if VM is overloaded or not, based on upper CPU

utilization threshold with reference value.

Take required actions

5.3 Implementation

Public class HorizontalVmScalingSimple extends

VmScalingAbstract implements HorizontalVmScaling {

private Supplier<Vm> vmSupplier;

private long cloudletCreationRequests;

private Predicate<Vm> overloadPredicate;

public HorizontalVmScalingSimple(){

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 9, Issue 11, November 2022

8

super();

this.overloadPredicate = FALSE_PREDICATE;

this.vmSupplier = () -> Vm.NULL;

}

public Supplier<Vm> getVmSupplier() {

return vmSupplier;

}

public final HorizontalVmScaling setVmSupplier(final

Supplier<Vm> supplier) {

Objects.requireNonNull(supplier);

this.vmSupplier = supplier;

return this;

}

public Predicate<Vm> getOverloadPredicate() {

return overloadPredicate;

}

public VmScaling setOverloadPredicate(final

Predicate<Vm> predicate) {

Objects.requireNonNull(predicate);

this.overloadPredicate = predicate;

return this;

}

protected boolean requestUpScaling(final double time) {

if(!haveNewCloudletsArrived()){

return false;

}

final double vmCpuUsagePercent =

getVm().getCpuPercentUsage() * 100;

final Vm newVm = getVmSupplier().get();

Log.printFormattedLine(

"\t%.2f: %s%d: Requesting creation of Vm %d to receive

new Cloudlets in order to balance load of Vm %d. Vm %d

CPU usage is %.2f%%",

time, getClass().getSimpleName(), getVm().getId(),

newVm.getId(), getVm().getId(), getVm().getId(),

vmCpuUsagePercent);

getVm().getBroker().submitVm(newVm);

loudletCreationRequests =

getVm().getBroker().getCloudletCreatedList().size();

return true;

}

private boolean haveNewCloudletsArrived(){

return

getVm().getBroker().getCloudletCreatedList().size() >

cloudletCreationRequests;

}

public final boolean

requestUpScalingIfPredicateMatches(final

VmHostEventInfo evt) {

if(!isTimeToCheckPredicate(evt.getTime())) {

return false;

}

setLastProcessingTime(evt.getTime());

return overloadPredicate.test(getVm()) &&

requestUpScaling(evt.getTime());

}

}

VI. RESULTS AND DISCUSSION

Results

Fig 1: Simulation test results

The above result shows the details of the simulation and

this result is compared with the existing algorithms in terms

of execution time, response time and waiting time.

Table 1: Comparison among load balancing algorithms

 RR Throttled ESCE HVMS

Avg. Execution Time 55.25 52.23 49.21 17.2

Avg. Response Time 0.68 0.45 0.44 0.4

Avg. Waiting Time 0.72 0.63 0.49 0.4

 ISSN (Online) 2394-6849

International Journal of Engineering Research in Electronics and Communication Engineering

(IJERECE)

Vol 9, Issue 11, November 2022

9

The above comparison shows that HVMS gives the best

time with respect to all the comparisons that has been done in

this paper. Hence, through this algorithm, we can efficiently

execute the request from the client and can even balance the

load in cloud computing environment.

Fig 2: Graph showing the comparisons of various load

scheduling algorithms in terms of response, waiting and

execution time

VII. CONCLUSION AND FUTURE WORK

The current cloud system mainly accepts IT-based service.

However, there are various concerns which are not

completely addressed so far such as load balancing, real time

scheduling, VM migrations and many more. Stability of the

system through load balancing is one of the important factors

in cloud environments, which deals with scalability of

workload without compromising the efficiency. Our

proposed algorithm overcomes all these issues and even takes

care of legitimately distributing the resources across the

cloud environment. Our algorithm has been implemented

with Cloudsim and the outcome of our algorithm outperforms

the well-known algorithms like Round Robin, Throttled and

Equally Spread Current Execution with respect to response,

waiting and execution time. Only average waiting time is

shows similarity in comparison with Equally Spread Current

Execution. The application of our proposed algorithm can be

achieved in real environment, in future.

REFERENCES

[1] Singh, Athokpam Bikramjit, et al. "A comparative study of various

scheduling algorithms in cloud computing." American Journal of

Intelligent Systems 7.3 (2017): 68-72.
[2] Singh, Athokpam Bikramjit, et al. "Survey on various load balancing

techniques in cloud computing." Adv. Computing” 7.2 (2017): 28-34.
[3] Singh A B, et al (2017c) “A comprehensive investigation of network

virtualization”, IJLTET, Special Issue, SACAIM-2017, 622-628
[4] J. Celestia (2016) "Cloud Computing Infrastructure," 2016. [Online].

Available:

http://www.tutorialspoint.com/cloud_computing/cloud_computing_in

frastructure.htm. [Accessed 2016].
[5] Nayak, Slesha, and P. Patel. "Analytical Study for Throttled and

proposed Throttled algorithm for load balancing in Cloud Computing

using Cloud Analyst." International Journal of Science Technology &

Engineering 1.12 (2015): 90-100.

[6] Ray, Soumya, and Ajanta De Sarkar. "Execution analysis of load

balancing algorithms in cloud computing environment." International

Journal on Cloud Computing: Services and Architecture (IJCCSA) 2.5

(2012): 1-13.
[7] Somani, Rajkumar, and Jyotsana Ojha. "A hybrid approach for VM

load balancing in cloud using cloudsim." International Journal of

Science, Engineering and Technology Research (IJSETR) 3.6 (2014):

1734-1739.
[8] Mohapatra, Subasish, et al. "A comparison of four popular heuristics

for load balancing of virtual machines in cloud

computing." International Journal of Computer Applications 68.6

(2013).

[9] Hu, Jinhua, et al. "A scheduling strategy on load balancing of virtual

machine resources in cloud computing environment." 2010 3rd

International symposium on parallel architectures, algorithms and

programming. IEEE, 2010.

