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Abstract— Predictive maintenance (PdM) systems have the potential to autonomously detect underlying motor issues at early stages. 

Although many such systems have been proposed up to data, they have yet to be implemented. Most of these methods, which are based on 

supervised learning, require hours of manual data collection and annotation. Furthermore, they are mostly made to tackle a single 

instead of the multiple motor issues that may occur and are unable to adapt to varying motor speed and load conditions. Thus, they are 

not viable for industrial implementation. Therefore, this paper presents an unsupervised LSTM autoencoder-based anomaly detection 

system for electric motors. It analyzes the vibration and current consumption data from motors to detect anomalies, which is sufficient to 

account for the various motor defects. The system comes with a variety of features that allows users to autonomously collect data, train 

models and deploy models. In addition to that, users can remotely keep track of the motor’s conditions. To test the system, a hardware test 

bench using a stepper motor is made to simulate defective conditions. The LSTM Autoencoder-based anomaly detection system is 

described step-by-step in this paper. 

 
Index Terms — Predictive Maintenance, Fault Diagnosis, Electric Motors, Long-Short Term Memory, Autoencoders. 

 

I. INTRODUCTION 

Electric motors are crucial components in modern 

manufacturing industries. They can be found in robot arms, 

automated guided vehicles, power generators, conveyor 

belts, etc. Currently, due to high manufacturing demand from 

users, electric motors operate continuously for 24 hours every 

day. This can cause motors to develop a multitude of defects, 

which if not treated in time, could lead to machine 

breakdown, production downtime, and financial losses [1]. 

Therefore, industries are increasingly looking into predictive 

maintenance (PdM) systems for motors to overcome such 

issues. Unlike conventional maintenance strategies, PdM 

systems use an array of sensors to help collect real-time data 

and use it to develop models or algorithms that can detect 

underlying issues in machines [2]. PdM systems are both less 

exhaustive and less prone-to-errors, unlike their traditional 

counterparts [3].  

The process of fault diagnosis of motors (FDM) happens to 

be a branch of PdM. The literature is filled with potential 

FDM systems [4]. Unfortunately, the majority of the FDM 

systems proposed by researchers make use of supervised 

learning models [5], [6], [7] and they suffer from certain 

flaws. In the case of supervised systems, manual data 

collection is required. After that, the data has to be annotated 

before training the model. This can be time-consuming for 

companies. Furthermore, most of the proposed systems were 

meant to tackle a single type of motor fault, whereas multiple 

faults may occur in an electric motor, such as bearing fault, 

rotor fault, stator issues, etc. Annotating the data for each of 

these faults would not only require time but would also 

require manpower as experts would be needed to interpret the 

features and annotate [8]. On top of that, supervised methods 

require users to simulate motor faults to collect the necessary 

data, so that fault classification can be made. This is a great 

challenge since accurate modeling of each fault is difficult 

[9]. 

Additionally, separate models have to be developed 

depending on the speed or load carried by electric motors. 

This means that models developed for a particular motor may 

not be applicable all the time, since the same type of motor in 

different machines may operate with varying speeds and load 

conditions. Overall, there are too many challenges to 

overcome before implementing an FDM system for motors. 

Thus, FDMs remain elusive in industries. Most of the 

proposed solutions have proven to not be viable for 

companies. 

What many people often overlook is that rather than 

developing complex supervised models, underlying issues 

can be detected by simply identifying anomalies [11]. 

Companies do not care what type of fault is occurring in their 

motor, they simply want to know whether the motor is 

working well. As such, detecting anomalies in real-time in 

electric motors can be sufficiently helpful. Unlike most FDM 

techniques, anomaly detection can be an unsupervised 

process and may not require manually annotated datasets 

[12]. Thus, this paper presents a long-short term memory 

(LSTM) autoencoder-based anomaly detection system for 

electric motors. The presented system is nearly unsupervised. 

Once connected to a motor, it can autonomously collect the 

vibration and current consumption data from the motor, train 

the LSTM autoencoder model and then deploy the model. 

The model analyzes the vibration and current signals from the 

motor to look for anomalies. The main part of the system 

comes in the form of a PC user interface that can easily be 

operated by a user. It also sends notifications to users. A web 

user interface (UI) is also part of the system, which allows 

users to observe the trend in data. The working process of the 

presented system is explained in detail in the next section.  
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II. METHODOLOGY 

A. System Overview 

The presented system is unsupervised. It consists of 

INA219 current and MPU6050 accelerometer sensors, which 

are for measuring the current consumption and vibration of 

the motor respectively. The sensors are interfaced with an 

Arduino Uno board is serially connected to a PC where the 

main algorithm for the presented system runs. The main 

system is in the form of a UI that enables users to initiate 

autonomous data collection, model training, and model 

deployment. It will collect data for a week and then use it to 

train an LSTM autoencoder model. After training the model 

is deployed. This model will then look for data points that 

deviate from the regular pattern. Using the model, the system 

will calculate the rate of anomalies occurring per second. If 

the rate of anomalies per second exceeds a threshold of 0 

anomalies per second (a/s) the system will send an SMS or 

email notification to the user as a warning. The notification 

message to the user will contain a link that can enable the user 

to access a web UI. Through this, it is possible to observe the 

trends in vibration and current consumption data, as well as 

the overall status of the motor. A block diagram representing 

the overall system is shown in Fig. 1. 

 

Fig. 1. Overview of the motor anomaly detection system. 

B. Experimental Setup 

To test the anomaly detection system, an experimental 

setup is made. It is used to simulate a motor bearing defect, so 

that we may understand whether the presented system can 

truly detect abnormalities. The setup is a slider that is 

controlled by a Nema17 stepper motor. It has a custom-made 

control box which is also run by an Arduino. A labeled image 

of the experimental setup used to test the system is shown in 

Fig. 2. The objective of this research is to build a motor 

anomaly detection system that can apply to motors in 

different machines. The stepper motor in the setup represents 

the motor that the system will be deployed on to look for 

anomalies, while the rest of the slider represents the machine 

parts controlled by the motor. 

 
Fig. 2. The experimental hardware setup to simulate motor 

bearing defect. 

As shown in the image above, the experimental setup has 

various sensors. The infrared (IR) sensors act as limit 

switches for the slider. The accelerometer sensor is placed on 

top of the stepper motor to measure the vibration, while the 

current sensor is connected to the motor’s power supply. It 

should be noted that the slider has a PID controller, which 

ensures that the motor maintains the same speed even when 

additional load is placed on the slider. This is done to make 

the bearing fault simulation more realistic. 

Now the question is, how can this hardware setup be used 

to simulate a bearing defect? A bearing is a delicate 

mechanical component that holds the shaft of a motor in 

place. If a bearing degrades, the motor shaft has trouble 

moving. This can cause the motor’s current consumption as 

well as vibration to change. In the works of Chopade et al. 

[13], Ozcan et al. [14], and Shao et al. [15], bearing defects 

were simulated by placing loads on the motor shaft, so that 

there is stress on the bearing. This made it higher for the 

shafts to move and caused changes in current consumption as 

well as vibration. Similar to the work of these previous 

researchers, loads were also added to this experimental setup 

to simulate a bearing defect. This was done by typing a basket 

to the slider and placing weights in the basket. An image of 

how the weights are added is shown in Fig. 3. 

 
Fig. 3. Basket tied to the slider (left) where the weights 

(right) are placed. 
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The weights, which are dumbbells of 1.25kg each, are tied 

to the slider from the side to produce unbalanced conditions 

on the motor. This would place more stress on the motor 

bearing. So basically, when the slider is operating without 

any weights in the basket, it is considered to be operating 

under normal conditions. As the dumbbells are placed into 

the basket one after the other, conditions on the motor 

become more unbalanced and the bearing defect is 

considered to become more severe as the motor shaft has 

more difficulty moving. The anomaly detection system is 

deployed in real-time on the setup to detect abnormalities as 

the load added increases. The system is tested with different 

load conditions as well as motor speed. Data analysis from 

this setup is explained in later sections.  

C. Data Analysis 

Before the overall system can be explained, it was 

necessary to understand trends in data from the stepper 

motor, especially as the weights are added to the slider. It was 

important to know whether the experimental setup could 

truly be used to test the presented system. We needed to know 

if an unbalanced load caused variations in vibration and 

current consumption like a bearing defect would. It should be 

clarified that vibration (acceleration along the x-axis, y-axis, 

and z-axis) and current consumption data are collected from 

the stepper motor described in the earlier sub-section. The 

unit of acceleration along the three axes is m/s
2
, while for 

current consumption it is ampere (A). Specifically for the 

purpose of data analysis, the stepper motor is run at 200 RPM 

and a weight of 2.5kg is added to it to simulate a bearing 

defect. The trend in data from the motor while running at 200 

RPM is shown in Fig 4. After collecting data under normal 

conditions, a weight of 2.5kg was placed in the slider’s 

basket. Data for this instance was collected to see if the 

unbalanced conditions caused changes in the data patterns. 

The data trend under this condition is shown in Fig 5. 

 

 

 

 

 
Fig 4: The trend in motor vibration and current consumption 

data. 

 

 

 

 

 
Fig 5. Trend in motor data after the 2.5kg weights are added 

to the slider. 

By comparing the graphs in Fig. 4 and Fig. 5, we can see 

that for the case of the Nema17 stepper motor, there seems to 



      ISSN (Online) 2394-6849 

International Journal of Engineering Research in Electronics and Communication Engineering 

(IJERECE) 

Vol 9, Issue 6, June 2022 

4 

be little change among the x-axis, y-axis, and z-axis data. 

However, we can see a lot of change in terms of current 

consumption. The current consumption pattern of the stepper 

motor changes as weights are added to the slider’s basket. 

Due to the unbalanced conditions, the current consumption of 

the stepper motors changes just as it would have if there was 

an actual bearing defect. An LSTM autoencoder model can 

easily be trained to analyze the current data pattern and detect 

abnormalities. 

D. LSTM Autoencoder Model 

The LSTM is a family of neural networks that can be used 

to analyze continuous data. It is a variation of the recurrent 

neural networks that were made to solve the issue of 

vanishing gradient [16]. Autoencoders on the other hand are 

neural networks that are applied for unsupervised learning. 

They can be used to efficiently learn data patterns and ignore 

the noise [17]. Autoencoders can be used to check whether 

data deviates from the regular pattern. Typical autoencoder 

models consist of encoder and decoder layers. The encoder 

compresses the input signals to latent features, while the 

decoder decompresses those features and reconstructs the 

input signals [18]. Autoencoders are trained on normal data 

patterns. Therefore, they reconstruct the signals based on 

familiar signal patterns. During deployment, the outputs and 

inputs of the autoencoder model can be compared to check 

data patterns and identify possible anomalies [19]. Since the 

vibration and current consumption data from the stepper 

motor are continuous and a machine learning model is needed 

to accurately learn the patterns in data, an LSTM autoencoder 

model is chosen for the motor anomaly detection system. 

This type of model is also chosen due to its effectiveness for 

motor fault diagnosis as shown in the works of Principi et al. 

[20] and Huang et al. [21]. The structure of the LSTM 

autoencoder model used for this project is shown in Fig. 6. It 

should be noted that this model is entirely custom-made. 

 
Fig. 6. Structure of the LSTM autoencoder model. 

As shown in the image, the encoder layer consists of three 

hidden layers containing 512, 256, and 128 units 

respectively. The decoder layer consists of the same number 

of layers and units but with reverse connections. The middle 

layer consists of four units that hold the compressed features 

of the input data[22]. After the encoder compresses the input 

signals, the decoder reconstructs the input signals from the 

compressed features. Then the error between the original and 

reconstructed signals is calculated. How this error calculation 

helps to segregate anomalies is explained in the next 

sub-section. Examples of original and reconstructed signals 

are shown by Fig. 7 and Fig. 8. 

 

 

 

 

 
Fig. 7. The original stepper motor signals. 
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Fig. 8. The reconstructed stepper motor signals by the LSTM 

autoencoder model. 

This LSTM autoencoder model is trained for 10-time steps 

(a sequence of 10 samples at each instant), with a batch size 

of 10 and 200 epochs. The dataset which is used to train the 

model is split into training and validation datasets with a ratio 

of 70 to 30 respectively. Only models with decremental 

validation losses are saved. Validation loss is chosen for 

performance measurement because it is a regression, and not 

a classification, problem. Thus, the final model saved each 

time the LSTM autoencoder model is trained has the lowest 

possible validation loss. 

E. Anomaly Segregation by Calculating Mean Square 

Error and Thresholding 

Now we know that LSTM autoencoders can reconstruct 

familiar signals, and anomalies can be found by calculating 

errors between original and reconstructed signals. However, 

how is this calculation done? If the error difference between a 

certain sample of the original and the reconstructed signal is 

above a certain threshold, then that sample will be classified 

as an anomaly. In this project, the error difference between 

the original and reconstructed signals is calculated using 

mean square error (MSE). So, if anomalous data is fed into 

the model, the MSE between its original and reconstructed 

signals should be higher than when the normal data is used. 

Overall, if the MSE of a data sample is above a certain 

threshold, it is classified as an anomaly. To determine the 

MSE threshold, the LSTM autoencoder model is deployed on 

the data that is used to train it (training data is considered as 

normal by the LSTM autoencoder model). As the model is 

deployed, the MSE between samples of the original and 

reconstructed signals is calculated.  

To understand the overall anomaly segregation process, let 

us go through a more elaborate example. Before this, it 

should be noted that the LSTM autoencoder model is trained 

with a timestep of 10. That means at each step, 10 samples of 

each variable are fed into the model. For example, at instant 

t=1s, the sample from current data may be c = [3.03, 3.41, 

3.27, 3.21, 3.04, 3.01, 3.01, 3.06, 2.9, 3.07]. The array will go 

through the LSTM autoencoder model which will produce a 

reconstructed array as illustrated by Fig. 9. The same MSE 

calculations are done for samples for the x-axis, y-axis, and 

z-axis acceleration. An example in Fig. 10 displays the 

outcome of MSE calculations for all four variables. It must be 

noted that this is only an example. As data from the motor is 

collected under different speed conditions, separate MSE 

calculations are done for the dataset from each speed level.  

 

Fig. 9. A data sample being fed to the anomaly detection 

model. 

 

Fig. 10. A representation of MSE calculations on the training 

data. 

We have already shown how MSE calculations are done, 

but how is the threshold determined? A threshold needs to be 

selected for the x-axis, y-axis, and z-axis acceleration and 

current consumption. The logical choice would be to select 

the maximum possible MSE value for each variable. 

However, at times the training data may contain a certain 

level of noise, which may cause a handful of samples to have 

a significantly high maximum value compared to the rest. 

Selecting these maximum values may not be the right choice 

for thresholds as even anomalous data may not display such 

high MSE. Therefore, we select thresholds by using a normal 

distribution curve.  

In a normal distribution curve, a value which is three 

standard deviations ( ) above the mean ( ) of a dataset is 

considered to represent 99.7% of the samples as shown in 

Fig. 11. Therefore, three   above the   can be the threshold 

MSE value for each variable. Nevertheless, we aim for more 

inclusive thresholds and choose four   above the   which 

represent 99.9% of a data sample. As an example, thresholds 

for each variable when the stepper motor is rotating at 200 

RPM are shown in Table 1. Different variable thresholds are 

obtained as the model is deployed at different motor speed 

levels.   
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Fig. 11. A theoretical normal distribution curve. 

Table 1. An example of MSE thresholds for each variable 

when the motor is rotating at 200 RPM. 

X-axis 0.023458609192501197 

Y-axis 0.026473839585112145 

Z-axis 0.023598881032951696 

Current 

Consumption 

6.594044765752045e-05 

Overall, for each of the four variables, if the MSE value of 

a sample is above the threshold, it is classified as an anomaly. 

All the calculations shown in this subsection are done 

autonomously by the LSTM autoencoder-based anomaly 

detection system. Once the system has completed training the 

model, it deploys the model on the training data to obtain 

these thresholds. These thresholds are used by the system to 

detect anomalies. It should be noted that the main system 

does not only detect the number of anomalies, but it also 

calculates the rate of anomalies that are occurring per minute. 

Basically, the system code samples the total number of 

anomalies that are occurring in a minute. So, if the total 

anomalies in a minute rises above a certain level (1 anomaly 

per minute in this case), the system notifies the user that the 

condition of the motor is degrading. The software part of the 

system which does all these necessary things autonomously 

is explained in the next sub-section. 

F. PC User Interface 

The PC user interface (UI) which gives users access to the 

unsupervised anomaly detection system is shown in Fig. 12. 

As shown in the image, the UI seems simple. It, however, has 

a wide array of functions. It is turned on after all the sensors 

have been connected to the motor and the Arduino board is 

plugged into USB port of the computer where the UI would 

be running. After it has been turned on, the user can initiate 

autonomous data collection by entering the duration of data 

collection in the input box labeled “Time”, entering the speed 

of the motor in the “Speed” input box and press the “Load 

Data” button. The data is saved in an excel file which named 

according to the speed input: [speed value]_speed.csv. 

 
Fig. 12. The status of the PC UI when models are deployed. 

 

Once the data collection is complete, the user has to click 

the “Train” button to begin training the LSTM autoencoder 

model. The system will automatically use the collected data 

for the specified speed level to initiate the training phase. 

When the model is model is complete, it is saved a .hdf file 

which is named according to the speed input to the UI. At this 

stage, the system automatically uses the trained model to find 

the MSE thresholds of each variable. This is done by 

deploying the model on the training dataset and carrying out 

the calculations and steps illustrated in the previous 

sub-section. The MSE threshold readings obtained are then 

saved in .txt file (also named according to the speed input).  

Now the next stage would be to deploy the model. The user 

has to click the “Deploy” button to and select the desired 

model from the database as shown in Fig. 13. Once that is 

done, the specified model will be deployed to detect 

abnormalities in real-time. The status of the UI when models 

are deployed is shown in Fig. 12. The trend in data and the 

rate of anomalies can be observed by opening the system’s 

web UI (which is a separate program file from the PC UI), 

which is illustrated in the next subsection.  

 

 
Fig. 13. The directory where the models are stored. 

G. The Web User Interface 

The web UI is made using HTML, CSS, and JavaScript 

code along with the Flask Python framework. MQTT 

protocols are also employed to get the remote data trends. 

These protocols are used to send the arrays for vibration and 

current consumption data from PC UI code and these arrays 
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are received by the web UI program, which displays them as 

graphs.  

The web UI is primarily made so that the user can check 

the status of the electric motor from a remote location. It 

displays the trend in vibration and current consumption data 

along with the rate of anomalies occurring in the stepper 

motor. Next to the anomaly rate meter, as shown in Fig. 14, is 

the block that displays the current state of the motor. If the 

anomaly rate is 0 anomalies per minutes (a/m) or 1 a/m (in 

case of noise from the surroundings that can affect the 

vibration), the status block will display “Status Ok”. In the 

case where the anomaly rate is between 2 a/m and 4 a/m, the 

status changes to “Abnormalities”. If the anomaly rate goes 

beyond 4 a/m, the status changes to “Change Motor”, the 

state of the motor would be severe. Appearances of the web 

UI are shown in Fig. 14. 

 

 

 

 
Fig. 14. The anomaly detection system’s web UI. 

The web UI can be accessed from anywhere through a link. 

This UI is the one responsible for sending notifications to 

users. When the rate of abnormalities rises, the system sends 

an email and an SMS to the user, asking them to check the 

motor’s condition via the web UI. The messages come with 

an accessible link that users can use to observe the motor’s 

conditions. This web UI is responsive enough to be viewed 

on a phone screen. The anomaly detection system is tested on 

the hardware setup under varying conditions. The results of 

these experiments are explained in the next section. 

H. Experiments under varying speed and load 

conditions 

The LSTM autoencoder-based anomaly detection system 

is tested on experimental hardware setup under different load 

and speed conditions. The stepper motor is rotated at speed 

levels of 190 RPM (rotations per minute), 200 RPM, 210 

RPM, and 220 RPM. At each level weights of 2.5kg, 3.75kg, 

5kg, and 6.25kg are added to the hardware setup 

incrementally. These weights are placed in the basket tied to 

the slider as shown in Figure 5 to create the unbalanced 

conditions necessary for a bearing defect. As more weights 

are placed in the basket, there would be more imbalance, 

reminiscent of a worsening motor bearing defect. Therefore, 

as the weights increase the rate of anomalies would also rise. 

The purpose of these experiments is to show that the 

intelligent anomaly detection system presented in this paper 

does indeed work and can detect abnormalities in the motor 

when they occur.  

In the experiments, each speed level has a different LSTM 

autoencoder model. It should be noted that the data and the 

model training are done using the PC UI as shown in the 

Methodology section. At first, the experimental setup is 

instructed to run at a particular speed, which it maintains 

through a PID controller. The PC UI is then initiated. After 

the specific duration (1 hour for all the experiments) and 

speed of the motor are entered into the input boxes, the “Load 

Data” button is clicked to begin automatic data collection. If 

the duration of this phase is over, an LSTM autoencoder 

model is trained using the specifically collected data by 

clicking the “Train Model” button. The training 

specifications are as mentioned in the last paragraph of 

Section D and were hardcoded into the main system code 

before the experiments. After the training is complete and the 

model is saved as explained in Section F, the specific model 

is selected from the database before clicking the deploy 

button. After the model is deployed, the system’s web UI 

program can be run to observe the condition of the stepper 

motor. The anomaly rates as the weights are added are 

recorded. The outcome of the experiments is shown in the 

Results section. 

III. RESULTS  

As mentioned in the previously, experiments were carried 

out under different speed and load conditions. The main 

system was deployed on the hardware setup using the PC UI 

and the results of each experiment were observed through the 

web UI. Anomaly rates for each experiment are recorded in 

Table 2. The experimental results illustrated below are 

divided based on the speed levels and the load conditions. 
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Table 2: Results with varying load and speed conditions. 

Speed 

(RPM) 

Load 

(kg) 

Anomaly 

Rate (a/m) 
Status on Web UI 

190 2.5 3 Abnormality 

190 3.75 4 Change Motor 

190 5 5 Change Motor 

190 6.25 6 Change Motor 

200 2.5 2 Abnormality 

200 3.75 5 Change Motor 

200 5 6 Change Motor 

200 6.25 7 Change Motor 

210 2.5 2 Abnormality 

210 3.75 3 Abnormality 

210 5 4 Change Motor 

210 6.25 5 Change Motor 

220 2.5 3 Abnormality 

220 3.75 5 Change Motor 

220 5 6 Change Motor 

220 6.25 7 Change Motor 

As shown by the above images, the rate of anomalies per 

minute increases as the weight acting on the stepper motor 

increases. This is proof that the system is capable of detecting 

anomalies. According to the above images, the system can 

also indicate worsening defects (bearing defects in this case). 

As the anomaly rates rise, the web UI sends an SMS 

notification to the user. Thus, this LSTM autoencoder-based 

anomaly detection system can be used for fault diagnosis of 

motors. Overall, based on these results it is clear that this 

system meets the objectives. It can analyze vibration and 

current consumption data and detect abnormalities when 

there are underlying issues. Through the autonomous data 

collection, model training, and model deployment features in 

the PC UI it can adapt to different speed and load conditions. 

The system managed to train specific LSTM autoencoder 

models for each speed level to detect anomalies. Last but not 

least, the web UI of the system works well enough to help 

users keep track of the motor’s conditions in real-time. Thus, 

we can say that the LSTM autoencoder-based anomaly 

detection system has worked successfully. 

IV. CONCLUSION 

Having an effective PdM system is essential to reduce 

unexpected machine downtimes, maintenance costs, and 

calamitous failures. Unlike conventional maintenance 

strategies, PdMs are less prone to errors and are less 

exhaustive. Furthermore, they have the potential to be 

autonomous. The FDM systems are a branch of PdM. They 

have the potential to detect underlying issues in electric 

motors, which are crucial components in many modern-day 

machines before they break down and cause financial losses. 

Unfortunately, the majority of FDM systems proposed so far 

are based on supervised learning methods. Therefore, to 

develop an FDM system an individual would have to collect 

and annotate data for hours. This can require manpower and 

time which a lot of companies are unable to allocate. Besides 

this, most of the proposed systems were developed to classify 

a single type of motor fault, whereas multiple motor issues 

may occur. Simulating the many fault conditions to train 

supervised models may be challenging. On top of this, 

different models would have to be trained depending on the 

load and speed conditions of a motor. Overall, there are an 

array of challenges when it comes to implementing FDM 

systems. However, what most people forget is that industries 

only wish to know if their motors are working properly and 

have no need for specific fault classification systems as 

proposed by previous works. Detecting abnormalities is one 

way to detect underlying motor issues. Unlike supervised 

methods, they can be unsupervised. Thus, anomaly detection 

systems would not require manual annotation of data, which 

is why they will consume less time and manpower. Hence, to 

overcome the issues of most proposed FDM systems, this 

paper presents an LSTM autoencoder-based anomaly 

detection system. The presented system detects anomalies by 

analyzing motor vibration and current consumption data. It is 

unsupervised and comes with a PC UI that can allow users to 

autonomously collect data, and train and deploy models. The 

system also comes with a web UI which helps users to 

observe the trend in data along with the rate of anomalies and 

the status of the motor.  

To test this anomaly detection system, an experimental 

hardware setup, which is a slider controlled by a stepper 

motor, is developed. The slider has an integrated PID 

controller that helps the setup to maintain a given speed. An 

accelerometer and a current sensor are attached to the stepper 

motor for data collection. The purpose of this slider is to 

simulate a motor bearing defect through the addition of 

unbalanced weights. As illustrated in Section 2.2, as the 

weights are added to the slider, there are variations in data, 

especially in current consumption. This is indicative that the 

experimental setup is suitable for testing the anomaly 

detection system.  

The system makes use of an LSTM autoencoder model to 

analyze vibration and current consumption data patterns from 

the stepper motor. It is chosen as it can reconstruct 

time-series signals. By finding MSE errors between the 

model’s original input and reconstructed output signals, it is 

possible to find anomalies. There is an MSE threshold for 

each of the four data variables: x-axis, y-axis, and z-axis 

acceleration, and current consumption. The system calculates 

these thresholds autonomously using an LSTM autoencoder 

model, as explained in the Methodology section. Through the 
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application of the thresholds, the anomaly rates are 

calculated. 

The overall anomaly detection system along with all of its 

features is deployed on the slider’s stepper motor at different 

speed and load conditions. Outcomes of these experiments 

are illustrated in the Results section. As shown by the images 

of the web UI, the anomaly rates for each speed level rise as 

more unbalanced weights are added to the slider. As the 

anomaly rates increase the system sends an SMS message to 

the user along with a link to the web UI, that allows the user 

to observe the motor’s conditions.  

Overall, based on the results it is evident that the system 

meets all the requirements to be an effective FDM system. It 

can detect anomalies autonomously by analyzing vibration 

and current consumption data. Its features allow it to adapt to 

different motor conditions. Finally, the system’s web IU can 

send notifications and help users to keep track of the motor’s 

conditions. The presented system works as expected and 

unlike many of the presented systems in literature, it does not 

require users to manually collect and annotate data for fault 

classification. Its autonomous data collection, model training, 

and model deployment features can make the system viable 

for industries.  

While the presented system has proven to be successful, it 

needs to be studied in more detail. For this paper, 

experiments are only carried out on a stepper motor. In future 

works, different motors may be used to evaluate the 

effectiveness of this anomaly detection system. Perhaps next 

time the system could be tested on a brushless DC motor. 

Should future experiments prove to be just as successful, 

there is no doubt that the LSTM autoencoder-based anomaly 

detection system can be implemented in companies for fault 

diagnosis of electric motors. If this is possible, it will not only 

be a strong contribution to the manufacturing industries, 

where motors are frequently used, but also to the automobile 

and aviation industries. 
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