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Abstract— This paper presents the research of the significance of the state of charge (SoC) and state of energy (SoE) metrics and their 

estimation methods for lithium-ion batteries used in an electric vehicle. SoC determines the remaining charge and SoE determines the 

remaining energy. The SoC-SoE variation is evaluated by simulating the factors while charging and discharging in different conditions. 

The larger the C rates the larger is the differences in the metrics. The SoC-SoE metric variation increases as the batteries age and hence 

it can be used as an indicator of the battery’s state of health. This study helps to understand the correlation between both metrics and 

understand the importance of SoE, SoC, and their functions. Various state estimation methods and their challenges have been discussed. 

There are various methods that are currently used to estimate these metrics in the literature. 

 

Index Terms— lithium-ion battery, state of charge, state of energy, state estimation methods. 

 

I. INTRODUCTION 

Electric vehicles (EVs) use recyclable lithium-ion batteries 

(LIBs) for energy storage as it has a large energy density and 

larger life cycle [1]. A battery management system (BMS) is 

required to ensure the safety and efficiency of lithium-ion 

batteries in electric vehicles. In BMS, state-of-charge (SoC) 

and state-of-energy (SoE) are two important aspects, which 

aid to estimate the range of the vehicle [2,3]. 

The most common way to estimate SoC is Coulomb 

Counting (or Ah counting) in which the technique of current 

integration is applied. However, simple coulomb counting 

does not consider battery aging (health), temperature or 

discharge rate. Because of these issues, academia and 

industry have worked to develop SoC forecasting methods 

that consider one or more of these factors [4]. 

SoC is a measure of the battery’s remaining charge relative 

to its full capacity. It is a measure of how much energy can be 

supplied by the battery at a given moment in time. Let’s 

consider an example, if the battery has capacity of 220 Ah 

and its SoC is 50%, then the battery has 110 Ah of energy 

remaining. On the other hand, SoE is a measurement of the 

total energy contained by the battery, expressed in watt-hours 

(Wh) or kilowatt-hours (kWh). Let us consider a scenario 

such that the battery has a capacity of 100Ah and a voltage of 

12V, then its total energy storage capacity is 1.2 kWh. 

Even though SoE has some similarities to SoC, it uses 

integrated power instead of discrete current. As such, it can 

be used to better monitor battery power than SoC metric 

[5,6]. In BMS, the SoC determines the level of charge 

remaining in the battery and hence prevents overcharge or 

over-discharge, which can damage the battery. The SoE 

indicates the total power a battery can provide, considering 

factors such as temperature [7]. 

The purpose of this research is to conduct experiments that 

explain the importance of the SoC and SoE metrics for 

lithium-ion battery to improve our understanding of how 

these metrics perform. Efforts have been taken to evaluate the 

current online estimation techniques for SoC and SoE, and to 

present the merits and demerits of each method of estimation. 

II. EQUATIONS OF SOE AND SOC PARAMETERS 

The SoC metric is estimated by load current integration 

and normalizing it with the nominal capacity Cn to give a 

dimensionless percentage value. The SoE is evaluated in the 

similar way by considering the integral of product of the 

instantaneous battery current and voltage and then converts 

this value into a percentage by normalization with nominal 

battery energy En [8]. For the tests conducted, the battery 

starts testing with fully charged state i.e. SoC and SoE will be 

considered as 100%. The equations of both the metrics has 

been stated below: 

𝑆𝑜𝐶(𝑘 + 1) = 𝑆𝑜𝐶(𝑘) +
∫ 𝜂𝐼(𝑘)𝑑𝑘
𝑘+1
𝑘

𝑄𝑟
        (1) 

𝑆𝑜𝐸(𝑘 + 1) = 𝑆𝑜𝐸(𝑘) +
∫ 𝜂𝑃(𝑘)𝑑𝑘
𝑘+1
𝑘

𝐸𝑟
       (2) 

SoC(k+1) is the SoC at the next instant, SoC(k) is SoC at 

current instant, I(k) is load current and Qr is total charge 

contained by the battery. SoE(k+1) is SoE at the next instant, 

SoE(k) is SoE at the current instant, I(k) is load current and 

Er is total charge capacity of the battery. η represents the 

charging or discharging efficiency. For now, considering it as 

1, for simplicity of calculations and to focus better on the 

metrics functions. 

Variation of SoC and SoE can be well understood from 

Fig. 1. It is assumed that ∆SoC1=∆SoC2, however the 
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∆SoE1>∆SoE2. That is, smaller SoC has more SoE, i.e., it 

has more energy. Hence, it is realized that SoC and SoE are 

two different parameters and SoE can appropriately predict 

EV mileage compared to SoC [9]. 

 
Figure 1: Discharge Curve OCV vs SOC 

III. RELATION BETWEEN SOC AND SOE 

SoC is the charge remaining after use, compared to the 

total charge present in the cell. 

SoC =
Qrem

Qtotal
                               (3) 

Where Qrem is the remaining charge and Qtotal is the total 

charge present in the cell. SoE is the energy present after use, 

compared to the total energy that is delivered by the cell. 

𝑆𝑜𝐸 =
𝐸𝑟𝑒𝑚

𝐸𝑡𝑜𝑡𝑎𝑙
                               (4) 

Where Erem is the remaining energy and Etotal is the total 

charge energy in the cell. 

The mathematical relation between the SoE and the SoC 

can be stated as: 

𝑆𝑜𝐸 = 𝑆𝑜𝐶 ∗
𝑈𝑜𝑐𝑣,𝑐𝑢𝑟𝑟

𝑈𝑜𝑐𝑣,𝑚𝑎𝑥
                  (5) 

Where 𝑈𝑜𝑐𝑣, 𝑐𝑢𝑟𝑟  is the current value of open circuit 

voltage that varies proportionally with SoC and 𝑈𝑜𝑐𝑣,𝑚𝑎𝑥 

is the max value of open circuit voltage [10,11]. The open 

circuit voltage (Vocv) is calculated based on the external 

voltage (Vt), series resistance voltage (Vr) and polarization 

voltage (Vp) i.e. 

𝑉𝑜𝑐𝑣 = 𝑉𝑡 + 𝑉𝑟 + 𝑉𝑝                           (6) 

The voltages vary as the parameters vary with the varying 

conditions. Hence. the voltages have to be calculated in real 

time. 

IV. EXPERIMENTAL EVALUATION OF METRIC 

DIFFERENCES AND RESULTS 

To understand how both the metrics function differently, 

let’s look at the practical scenario. The specifications for the 

Lithium-ion INR 18650-25R NMC cell, that is used to 

present the difference between SoC and SoE, is given in 

Table 1. 

Table 1 : Specifications of the INR 18650-25R cell [12] 

Parameters Specifications 

Type INR 18650-25R 

Nominal capacity 2.5 Ah 

Actual energy 8.7488 Wh 

Current range 1C-5C 

Voltage range 2.5V - 4.2V 

SoC functional scale 10%-90% 

SoE functional scale 10%-90% 

To get the SoC-SoE differences, we are first evaluating the 

SoC and SoE for a cell with the simulation model of the Li–

ion battery. To calculate the SoC, we will require the load 

current, that is integrated over time to achieve the capacity 

used, the total capacity of the cell is known from datasheet. 

To calculate the SoE, we will require the load current and 

terminal voltage. Integrating it over time will give the energy 

used, the total energy of the cell is known from datasheet. 

A. Load current conditions 

The cell was tested for charging, discharging, mixed and 

still load current. The results were observed for SoC and SoE 

to understand the difference in performance of both the 

metrics, over a period of time (3600 secs). 

For charging scenario, there are two ways to charge i.e. 

charging with constant current and charging with gradual 

increase in load current (fig 2 and fig 3). Similarly, for 

discharging, the two scenarios are discharging with constant 

current and discharging with gradual decrease in current (fig 

4 and fig 5). The third load current condition is low load 

current i.e., the current is very low but not zero, for a small 

time period (fig 6). The fourth load current condition is real 

time varying load current condition i.e. the load current in 

actual scenario is never constant and is always varying with 

time, so the load current is changing randomly with real life 

kind of condition (fig 7). 

The simulation results are presented in the form of graphs. 

It can be clearly seen that in every load current condition, 

there is variation in SoC and SoE value over a time period. 

SoC value presents the charge contained by the cell whereas 

the SoE metric presents the energy contained by the cell at 

that particular time. 

Hence it can be understood that the variation of SoC and 

SoE metric is quite significant and should be calculated by 

the BMS to understand the cell/battery charge and energy 

supplied by the cell/battery. 

The cell model was simulated to achieve the state 

parameters, SoC and SoE. The various load current 

conditions are given as input and the simulation results are 

displayed in every figure. 

In the next section the effect of various C rates on these 

metrics is evaluated experimentally and the results are 

presented in the form of graphs. 
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1) Charging condition: 

 
Figure 2: Charging with constant current 

 
Figure 3: Charging with varying load current 

2) Discharging Condition : 

 
Figure 4: Discharging with constant current 

 
Figure 5: Discharging with varying load current 

3) Still load current condition: 

 
Figure 6: Low load current condition 

4) Mixed load current condition: 

 
Figure 7: Real time varying load current condition 
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B. Effect of C-rate on SoC-SoE metric differences 

As the C value increases, it is seen that the SoE-SoC metric 

difference increases. Understanding and analyzing this 

through a charging experiment on 2.5 Amp-hr cell. The load 

current for the charging scenario is varied according to C rate. 

a) 2C  = 5Amps 

 
Figure 8: Load current is 5 amps 

b) 1C=2.5 Amps 

 
Figure 9: Load Current is 2.5 Amps 

c) 0.5 C=1.25 Amps 

 
Figure 10: Load current is 1.25 Amps 

d) 0.2C= 0.5 Amps 

 
Figure 11: Load Current is 0.5 Amps 

The simulation results are presented in the form of table 

(Table 2), where the SoE-SoC difference is provided for each 

C rate. 

Table 2: SoE-SoC difference at various C rates 

C rate SoE-SoC Difference 

0.2C 2.643 

0.5C 3.601 

1C 7.023 

2C 15.95 

From the table shown above, it can be observed that as the 

C rates increases the difference between both the metrics also 

increase. As C rate increases the health of the battery 

degrades and hence the difference between both the metrics 

can be used as an indicator of health [13]. 

V. STATE ESTIMATION METHODS AND KEY 

CHALLENGES 

One of the prime task of the BMS is state estimation for the 

efficient and reliable use of EV. Many methods are discussed 

in literature to calculate SoC and SoE online. Each estimation 

technique has pros and cons and the usage depends on the 

application and data present initially. 

1) SoC estimation techniques and key challenges: 

Accurately estimating the SoC within desired limits can 

prevent overcharging or over discharging, thus extending 

battery life. However, SoC can’t be measured directly and 

hence has to be derived from physical quantities i.e. current 

and voltage [14]. The SoC estimation methods that are 

usually preferred are: the Coulomb counting method where 

the value of the current is the main quantity to estimate 

SoC [15-17]; Open circuit method (OCV) using the 

OCV-SoC lookup table to estimate SoC [18]; An artificial 

intelligence method that determines data such as battery 

current and voltage and creates models 

using machine learning [19-21]; and the physical model 
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based methods such as equivalent circuit models and 

electrochemical models that use the power electronics 

components to reflect the changes taking place in battery 

[22-27]. There are many challenges with these techniques. 

a) Coulomb Counting Method 

This method can be used to compute the SoC easily and 

directly, but the initial SoC should be accurate. The SoC 

value calculated using this method has sensor errors and 

calculation errors hence the estimated value is deviated from 

the actual value [28]. 

b) OCV-SoC method 

Another widely used method is OCV-SoC method, the 

SoC metric can be estimated from the SoC-OCV lookup 

table. The OCV Method is quite laborious in a practical 

situation. The sensor should have high resolution to measure 

the voltage accurately. Also, long relaxation hours are 

required to reach an equilibrium state. The OCV–SOC graph 

for Li-batteries is almost flat, which indicates that a slight 

error in OCV measurement might result in a large estimation 

error [29]. 

c) Electrochemical impedance spectroscopy method 

Electrochemical impedance spectroscopy (EIS) is used to 

reflect the electrochemical reactions occurring in the battery 

to determine the SoC. The procedure is to inject small 

amplitude AC signals at various frequencies into the battery 

[30]. Many parameters such as ohmic resistance, charge 

transfer and polarization capacitance can be examined from 

EIS measurement data. The process is inexpensive, but the 

equipment is expensive. Although the EIS results are 

accurate, they are hard to clone because the system must 

operate in a steady state condition. The effects of battery 

aging and temperature changes will cause the estimate to 

differ from the actual value, resulting in an understatement. 

These parameters vary with varying SoC and therefore can be 

used to estimate SoC [31]. 

d) Model based method 

Among all the SoC estimators, the method based on model 

(MBM) seems to be the best option for real time SoC 

estimation at the moment. The whole MBM process is 

classified into two steps, namely (i) Designing the battery 

model with parameters such as resistances and capacitances; 

(ii) Implementation of algorithm. In fact, it estimates SoC 

indirectly, as it first creates the appropriate model and then 

uses a power algorithm to predict the online battery SoC. The 

MBM uses KVL equation (Equation 6) to form battery 

modelling equations. In particular, the filter method and the 

observer base methods can be used to estimate SoC in MBM 

[32]. The most used battery models are electrochemical 

model and the equivalent circuit model. The electrochemical 

battery model is often used to analyse battery performance as 

it captures the kinetics and charge transfer in the battery and 

reflects the thermodynamic effects. However, the accuracy 

estimation of the model parameters is still a challenge and 

requires computational efforts to reflect the aging and 

temperature effect [33,34]. 

Another popular model is the equivalent circuit model 

(ECM), which uses electronic components to simulate 

battery dynamics. It looks promising for real time SoC 

estimation as it has simple structure. However, it has been 

determined that ECM parameters may change over time, at 

different temperatures, SoC or aging levels [35,36]. The 

MBM overcomes the disadvantage of some of the direct 

estimation methods mentioned earlier, such as using the 

OCV-SOC method and CCM which requires SoC 

initialization. 

e) Artificial Neural Network based method 

Artificial intelligence (AI) is one of the powerful tools to 

predict the various states of any system. Has the ability to 

learn independently. It may be used to predict SoCs without 

previous knowledge of the battery’s contents. Artificial 

neural networks (ANNs) are one of the branches of AI. Fuzzy 

logic has similar properties to ANN and is therefore also used 

for SoC estimation [37]. The actual SoC obtained by ANN 

estimator over the entire battery life, including the potential 

loss of the battery. The ANN has three layers, that are input 

layer, hidden layer, and the output layer. The input process is 

powered by battery physical quantities such as current, 

voltage and temperature. The output process generates SoC 

for a given state. The algorithm consists of a feed forward 

transition and a back-propagation process. A cascading 

process runs from the initial layer to the final layer with bias 

via the hidden layer [38]. 

Back propagation technique is used to reduce the error 

close to the target function by adjusting the weights of the 

output and input parameters. This process runs continuously 

until the closest value for the objective function is achieved. 

The disadvantages of the ANN are that it needs more neurons 

to improve accuracy, which limits the success of the model 

over time. In addition, every neural network needs to be 

trained and lot of iterations are required due to which it 

consumes a lot of time. Therefore, well trained ANNs can be 

used for specific applications. The algorithm must store a lot 

of information for training, which not only requires a large 

amount of memory, but also overloads the entire system. 

f) Filter-based method 

Approach using filters for SoC estimation of EVs are 

commonly used for noise rejection. It can achieve desired 

results with high accuracy. Usually the SoC and SoE value 

are affected by noises in the system and errors may arise due 

to sensor inaccuracy. There are various types of filter that can 

be used to estimate SoC, such as Kalman filter (KF), 

Extended KF, Unscented KF and Particle filter. Studies have 

shown that KF is the best option for metric estimation in EVs 

[39]. The main idea of the generalized KF used is, to 

construct a set of state-space modelling equations based on 

the appropriate ECM. The metric is considered as a state 
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variable, the current as input variable and voltage and the 

output variable. The Kalman gain is calculated based on the 

error between the measured value and the estimated value. It 

can also be used in situations where the system is affected by 

external noises. 

However, the basic KF cannot be used for the non-linear 

systems and also involves lot of complex mathematical 

calculations. To overcome this shortcoming of KF, EKF was 

introduced. It is used for metric estimation using partial 

derivatives and Taylor series expansion [40]. If the system 

becomes very nonlinear then it can result in linearization 

errors. 

g) Observer-based method 

Similar to filters, the observer-based approach aims to 

reduce the error between the observed state and the actual 

state using the feedback closed loop. Few observers that are 

used for SoC estimation are Proportional-integral observer 

(PIO), Sliding mode observer (SMO) and Non-linear 

Observers (NLO). 

The PIO is a very robust state estimator and is considered 

capable to improve the accuracy and is relatively faster than 

other methods. A 2RC ECM model is used with PIO to 

increase accuracy in [41-43]. Another observer is SMO, 

which can achieve high accuracy and has fast response time. 

It is resistant to environmental influences the model 

uncertainties [44]. A NLO is used to reduce the errors in the 

grid with the help of nonlinear analysis. This method 

outperforms the EKF and SMO, with regard to accuracy, 

computational speed and price. However, finding the 

appropriate gain matrix to reduce the error is difficult. 

Methods for SoC estimation are been listed in Table 3. 

Each method has advantages and disadvantages, that would 

help to understand its need depending on the application. 

2) SoE estimation techniques and key challenges: 

Accurate SoE estimation can relieve users’ anxiety about 

running out of battery power. Finding the correct SoE 

estimation techniques is considered to be difficult than SoC 

estimation task [45]. So far, many attempts have been made 

to improve the performance of the SoE estimation. The main 

estimation techniques are summarized below: 

a) Power Integration method 

A type of SoE estimation is the power integration method, 

which can effectively reduce the computational load [46]. 

However, due to its open-loop nature, this approach leads to 

uncertainty, low resolution, and measurement error. Suitable 

characteristic mappings have been used to improve the 

accuracy [47]. 

Although these techniques show the improvement in the 

performance of power integration method, these methods are 

expensive and require time consuming calibration. 

 

b) Joint estimation based method 

Wang et al. [48] developed a quantitative relation between 

the SoC and SoE, and these two quantities were jointly 

estimated using the particle filter (PF) algorithm. Zheng et al. 

[49] proposed a joint estimation framework for SoC and SoE 

with high accuracy and robustness, and the total available 

energy was estimated using the sliding window moving 

energy integration method. However, the above methods 

require an accurate SoC as an input. If there is an error in the 

SoC estimation, it will result in an SoE estimation error. 

Table 3: Merits and Demerits of Different SoC Estimation 

Methods 

Methods Merits Demerits 

Coulomb 

Counting 

Easy to compute. 

SoC can be 

calculated directly. 

Useful for short 

term estimation. 

Accurate initial 

SoC is needed. 

Current value 

should be very 

accurate. 

Open circuit 

voltage method 

Very efficient if 

accurate OCV is 

known. 

Easy to be 

implemented. 

The battery 

should be at rest 

for long time. 

Small error in 

OCV causes 

large error in 

SoC 

measurement. 

Electrochemical 

Impedance 

Spectroscopy 

method 

It achieves good 

accuracy and can 

operate online if 

the value of 

impedance is 

updated. 

EIS results are 

difficult to 

reproduce in 

non-steady state 

condition. 

The equipment is 

expensive. 

Model based 

method 

Very accurate for 

online SoC 

estimation. 

Captures the 

internal battery 

performance. 

Low time required. 

Initial SoC is not 

required. 

Precise 

estimation of 

model 

parameters is 

necessary. 

High 

Computational 

efforts. 

ANN-based 

method 

Do not need the 

data of internal 

structure of 

battery. 

Self- learning 

algorithm. 

Capable to work in 

non-linear 

conditions. 

Many training 

samples are 

required. 

More neurons are 

needed to 

improve 

accuracy, which 

in turn overloads 

the system. 
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Methods Merits Demerits 

Filter based 

Methods 

States can be 

estimated very 

accurately in spite 

of the external 

disturbances. 

Also, can predict 

the non-linear 

dynamic states. 

Needs large 

computing 

capacity. 

Requires highly 

complex 

mathematical 

calculations. 

a) Filter based method 

These methods result in highly accurate estimation 

reading, even when it is affected by external disturbances or 

sensor noises. Various filters have been proposed by 

researchers to get the accurate estimation results. Such as 

Estimation using adaptive kalman filter (KF), unscented KF 

(UKF) [50] and extended KF (EKF) [51].  Particle filtering 

method is proposed in ref. [52] to suppress the measurement 

noises. These methods have high precision and are very 

robust. 

However, the battery model has to be very accurate in 

order to get the perfect parameters in case of adaptive KF 

[53]. These parameters are changing with the temperature 

and aging effect and hence have to be accurately calculated 

from time to time. 

b) Neural network-based methods 

Machine learning techniques such as back propagation 

neural network (BPNN) and wavelet neural network (WNN) 

are applied to estimate SoE. BPNN is used to capture the 

nonlinear properties of batteries. In ref. [54] a method has 

been proposed on the BPNN model, in which the voltage, 

current and temperature of battery are given as input and SoE 

as output. Similarly, the wavelet-NN model is also used to 

simulate the battery electrodynamics [55], considering effect 

of temperature. In ref. [56] a NN model was developed to 

explain the voltage response of LIBs at various current and 

temperature excitations, using a Monte Carlo sampling 

technique as a Bayesian probability learning scheme to 

predict the SoE. 

The biggest disadvantage of the NN methods is that a lot of 

data is required to describe the battery dynamics and to train 

the system. 

c) Prediction-based methods 

In these methods the SoE is predicted using historical data 

and the past performance of the battery is considered. Such as 

in ref. [57] where the SoE was calculated depending on the 

future voltage sequence and in ref [58], the future 

temperature sequence was used. A combined Markov and 

Gaussian transition model were analyzed to predict the future 

temperature in ref. [59]. 

The forecast errors may increase when the future 

conditions vary significantly. In addition, the next sequence 

must be repeated each time and requires many calculations. 

These the above explained methods have been tabulated 

with the advantages and disadvantages in Table 4. 

VI. CONCLUSION 

Owing to the advantages of the Li-ion batteries, it has been 

welcomed by researchers as well as the industry to be used in 

the EVs. With the increased usage of LIBs, it becomes 

necessary to maintain its efficient operation and ensure its 

safe operation. Hence for this purpose the BMS is used to 

measure the metrics that define the fitness of the battery. The 

metrics that define the fitness are SoC and SoE and hence its 

estimation is a necessity. 

This study explains the estimation methods for both the 

metrics as well as discusses the various estimation techniques 

used till date with its drawbacks. It would help the future 

researchers in the form of guidance for their research work. 

Table 4: Merits and Demerits of Different SoE Estimation 

Methods 

Methods Merits Demerits 

Power 

integration 

approach 

Low computation 

burden. 

Errors are 

accumulated 

due to imperfect 

measurements and 

sensor noises. 

Joint 

estimation-ba

sed method 

Has high accuracy 

and robustness 

It requires accurate 

SoC as an input. 

Error in SoC 

value will lead to 

inaccurate SoE 

estimation. 

Filter based 

method 

Have high 

precision and 

robustness 

Battery model has 

to be highly 

accurate to reflect 

the temperature 

changes and aging. 

Neural 

network-base

d methods 

Capable of 

simulating battery 

electrical 

dynamics 

considering the 

temperature 

change and 

discharge rate. 

Too much data 

needed to train the 

model. 

Prediction-ba

sed methods 

Input as SoC is not 

required. 

Accurate 

Equivalent circuit 

model is not 

required. 

Large number of 

calculations are 

conducted. 

Prediction errors 

increase when the 

future conditions 

change drastically. 
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