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Abstract—This study investigates a methodology using sensor data from a humanoid robot to interpret a human’s feelings towards 

a social interaction with the robot. Subjects of diverse backgrounds taught the robot how to play a rock-paper-scissors game while 

the robot discreetly took measures of hand temperature, tactile pressure, forces, and face distance. Before and after the interaction, 

surveys were administered to measure the subject’s technophobia level and reactions to the robot. Several correlations were found 

between the questionnaire data and sensor data, following tendencies supported by previous research and psychological studies. 

The usage of robot sensor data may provide a quick, natural, and discreet alternative to survey data to analyze user feelings 

towards a social interaction with a humanoid robot. These results may also guide roboticists on the design of humanoid robots and 

sensors able to measure and react to their users. 
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I. INTRODUCTION 

 
When we meet someone for the first time, the 

initial handshake leaves a strong first impression. A firm, 

warm handshake will create a better rapport than a cold, 

weak one. We constantly use measures such as temperature, 

sweat, and eye contact to assess what another person is 

feeling, and then dynamically adapt to that person’s stress 

level. However, in human-robot social interaction, 

researchers often depend on more explicit measures rather 

than signals of a person’s internal state.  

Within the field of human-robot interaction (HRI), 

surveys are the most common way to receive feedback 

about the user's experience. While surveys do collect clear 

opinions, filling out a survey can be unnatural and lengthy 

for a subject. Surveys can be affected by response bias, 

where subjects select answers based on perception of the 

questionnaire rather than the questionnaire content itself [1], 

and surveys are also cumbersome for researchers to prepare, 

transcribe, and analyze. For quick, natural-environment, or 

multi-user experiments, it may even be impossible to 

administer a survey. 

A segment of HRI research is beginning to focus 

on interpreting a user's reactions to a humanoid robot 

through non-survey techniques. These techniques include 

behavioral analysis [2], speech analysis [3], and external 

biofeedback device usage [4]. Our research wishes to use 

the variety of sensor data that is collected by a robot during 

an interaction, including temperature, forces, and face 

distance. These sensor data may be usable as biosignal data  

 

that reflect objective readings of a subject’s feelings towards 

a robot. In psychology research, biosignal data – particularly 

hand temperature have been frequently used to measure  

stress and relaxation [5,6,7]. This study combines this long-

used psychological methodology and the well-developed 

sensing abilities of humanoid robots to create a tool for HRI 

research.  

The usage of sensor data presents many benefits over 

survey data. First of all, the data can be collected in large 

amounts for example, in this study, at the rate of about 1700 

measurements per minute for each sensor allowing 

experimenters to analyze small changes over time. There is 

also a wide variety of small sensors available that can be 

attached to a robot to adapt to different types of interactions. 

This experiment utilizes temperature sensors, tactile sensors, 

and cameras, but one could also imagine including sensors 

like skin conductance sensors or heart rate sensors. Most 

importantly, the usage of sensors attached only to the robot 

creates a natural environment. The sensors can be 

unnoticeable, and there is no preparation needed for the 

human subject. When using a humanoid robot, the data 

collection becomes very natural the humanoid robot only 

has to shake hands with a person to establish contact and 

collect data on their feelings, just as humans regularly do in 

their own handshakes.  

In order to establish the effectiveness of this 

methodology, one main measure we use for comparison 

with the sensor data is the level of technophobia a subject 

has prior to the experiment. Technophobia is a phenomenon 

that occurs when people feel a resistance and anxiety 

towards emerging technologies [8]. For example, people 

who refuse to upgrade from VCRs to DVRs out of fear of 
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acclimating to a digital format can be considered 

“technophobes”. HRI research has used survey measures of 

technophobia in order to analyze interactions [9]. 

Technophobia may play a strong role in how relaxed and 

positive people feel when interacting with humanoids, and 

would be the clearest measure for assessing the accuracy of 

sensor data.Previous studies conducted have revealed strong 

correlations between a person's behaviors towards a robot 

(such as reciprocation, vocalizations, etc) and the sensor 

data a robot collects [10, 11]. This study looks at the more 

explicit measures of survey data and analyzes their 

correlations with sensor data. While past studies have been 

in fast-paced, multi-user environments, this study takes 

place in a one-on-one, focused teaching environment, 

allowing us to analyze change in an individual subject’s data 

over time. We also explore which sensors are particularly 

relevant for HRI research 

 

II. METHODOLOGY 

 

A. Overview  
Human subjects were asked to teach the robot how 

to play the game “rock-paper-scissors” and then play it with 

the robot. Subjects taught the robot by physically moving its 

right arm and fingers. This task was chosen for several 

reasons: it is internationally well known, it involves 

continuous touching of the robot's hands, it can be easily 

and safely performed by a three-fingered humanoid (versus 

an interaction that requires complex body movement), and 

the arm position is the same for each move, so a repeated 

measure for a constant gesture can be taken. The “game” 

element and allowing the subject to see actions they taught 

to the robot makes the experiment also more rewarding and 

meaningful for the subject. Fig. 1 shows example hand 

positions for the robot for each game gesture. The robot also 

shook hands with the subject before and after the interaction 

to take extra sensor data measurements.  

B. The Humanoid Robot HRP-2  

This study uses the humanoid robot HRP-2, 

developed by Kawada Industries. The HRP-2 is a bipedal 

robot weighing 58 kg, measuring 154 cm tall, and is 

equipped with 30 degrees of freedom (DOF). Our laboratory 

has replaced both of the HRP-2's hands so that they include 

three fingers each, with 2 DOF in the thumb, 3 DOF in the 

index finger, and 1 DOF in the middle finger region. We 

added several sensors to the robot’s hands for the purpose of 

this experiment: eight tactile sensors (Interlink Standard 400 

force sensing resistors; three each on the thumb and index 

finger, two on the index finger), and three temperature 

sensors (SEMITEC extra-thin high-precision thermistors; 

one each on the robot’s palm, thumb, and index finger). 

These sensors are covered and are not noticeable to the 

subject. In order to make a realistic interaction, the HRP-2 

speech synthesis abilities were embedded, using AquesTalk 

[12] for Japanese speech and Festival [13] for English 

speech. The robot was given a “cute,” robotic female voice, 

which was selected for the robot through a general campus 

survey [10]. The robot’s program was written in Euslisp 

[14], using a ROS architecture [15] that allowed for 

asynchronous control of the robot’s head and body. The 

robot’s head faced the subject when shaking hands, 

confirming the taught gestures, and when playing the game. 

The robot’s head followed its own hand when the subject 

was teaching the robot gestures.ng the robot gestures. 

 
Figure 1. Example rock-paper-scissors gestures between the 

HRP-2 and a human (upper left: rock; upper right: paper; 

bottom: scissors) 

C.Participants  

Thirtyeight righthanded subjects were recruited for 

this study. Subjects ranged in age from 19 years to 33 years, 

with an average age of 23 years. Fourteen subjects were 

female, while 24 were male. Subjects came from diverse 

backgrounds, including 12 different universities and 

companies in Japan, 15 different fields (engineering, 

economics, theatre, etc), and 14 different countries within 

North America, Europe, and Asia. This study was run in 

either Japanese or English, based on the language most 

natural for each participant. The language choice affected 

both the language in which the robot spoke and the language 

of the questionnaires. The same experimenter wrote both 

languages’ scripts and surveys, ensuring translation 

accuracy.  

D.The Interaction  

Refer to Fig. 2 for images depicting the main steps 

in the interaction. Subjects were first asked to answer a 

survey measuring technophobia before seeing the robot, 

although they were not told the topic of the survey so as to 

diminish response bias. This survey included parts of the 

Technophobia Measurement Instrument, developed by Weil 
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et. al [16], which includes three main components: “the 

computer anxiety rating scale,” “the computer thoughts 

survey”, and “the general attitudes towards computers 

scale.” We added a fourth section that asked similar 

questions to the “general attitudes towards computer scale”, 

but were related to humanoid robots instead of computers. 

Subjects' hand temperatures were also taken from the palm 

and back of the right hand before seeing the robot to serve 

as a baseline for the study.  

The experimenter then described the study and showed a 

demonstration video of the interaction with the robot. 

Subjects were told that they were going to teach the robot 

how to play rock-paper-scissors, and then they were going 

to play the game with the robot five times. The subject then 

got to meet the robot. When the subject stood in front of the 

robot, the robot tracked the subject's face, moving its head 

to make “eye contact” with the subject. After tracking the 

subject's face for five frames, the robot initiated a 

handshake, waited for the subject to grab its hand, and then 

shook it carefully. 

 
Figure 2. Images from an example interaction with the 

robot.  

After the initial greeting, the robot went into 

“learning mode,” where the subject taught the robot how to 

make the gestures for rock-paper-scissors. The subject took 

the robot's hand and the robot grasped it in a manner similar 

to a handshake. Then, the subject moved the robot's arm to 

the right position for a gesture. The subject then pushed 

down on the robot's shoulders to “save” that position and the 

robot released the subject's hand. The subject then moved 

the robot's fingers into the right positions and then press 

down on the shoulders again to save the finger positions. 

The robot confirmed that gesture by showing the subject 

what it was taught. The subject was asked to teach the robot 

six times total teaching each gesture (rock, paper, scissors) 

twice. The ordering of the gestures was randomized for each 

subject.  

After the teaching period, the subject played rock-

paper-scissors with the robot five times. For each move, the 

robot randomly selected one of the gestures taught to it by 

the subject. After each throw, the robot reacted vocally to 

whether it won, lost, or tied each game. The experimenter 

covertly inputted the subject's move to the robot, so that the 

robot would seem to be reacting naturally and accurately to 

the game.  

After the game, the subject shook hands with the robot 

one last time as it said goodbye, and then subjects were 

asked to fill out a post-experiment survey. This survey 

included biographical questions (age, gender, nationality, 

etc), questions about the robot's personality (what adjectives 

people would assign to it, whether it was scary, etc), and 

questions about the interaction itself (whether it felt 

meaningful, what suggestions they had, etc). The interaction 

with the robot took approximately twenty minutes, and the 

entire study took about forty minutes per subject. During the 

interaction, the experimenter sat out of view from the 

subject, but was accessible if the subject had questions or 

felt uneasy. When asked questions, the experimenter either 

repeated the instructions, repeated what the robot said, or 

stated, “I'll explain in detail after the experiment.” The 

rooms used in the experiment were kept at the same basic 

temperatures across the span of the study. 

E.Data Collection and Analysis   

During the experiment, the robot was constantly 

taking sensor data from the subject. With its cameras, it 

recorded the subject's face distance from the robot using a 

face-detection software plugin. With its hand, the robot took 

the subject's hand temperature (three places as described in 

Section II-B) and tactile pressure (eight places). The robot 

also measured the force on the joints in its arm in six 

directions (x, y, z, roll, pitch, yaw). A linear regression 

analysis was also run for each subject on all temperature 

data measurements over the time of the experiment, and 

slope of the regression line and correlation coefficient r 

were used as two additional variables to examine in 

comparison to the survey data. These variables will be 

referred to as the six measures of temperature growth, 

corresponding to a slope and a correlation coefficient for 

each of the three temperature sensors.  

Each subject’s data totaled over 30gb, so the data 

were put through many filters to get them to a manageable 

size. Biographical and survey data were combined with the 

sensor data by subject. Four subjects’ data were discarded 

because of network or disk space errors that prevented most 

of their sensor data from being saved. This study focuses on 

the data during the experiment beginning and ending 

handshakes and the moving of the robot’s arm during 

teaching, because these behaviors present the most 

consistent movement. The moving of the robot’s fingers 

included a wide diversity of actions (for example, the many 
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ways to represent “scissors”), and there was little contact 

with the robot’s sensors, so those data were not analyzed. 

The dataset for each subject’s first taught gesture was also 

counted as a “test phase” and thrown out, since subjects 

used the first gesture to learn the pacing of the experiment 

and to ask the experimenter questions about how to teach 

the robot. 

 

III. RESULTS 

 
We conducted pearson’s correlations across the 

sensor data and questionnaire data. A color-coded chart of 

correlations reported in this section can be seen in chart 

below. Some questionnaire items had no significant 

correlations with the sensor data, and were not 

included here. measures were only included in this analysis 

when all three temperature measures had significant 

correlations in the same direction. correlations between 

survey items were not investigated unless if related in 

content to sensor correlations, as solely survey based 

analysis was not the focus of this study  

 
 

Figure below represents a chart indicating 

statistically significant correlations between questionnaire 

data and sensor data. each cell represents the set of 

correlations between its corresponding column header and 

row header. temperature, temperature growth, and tactile 

readings had multiple measures, so they are reported here in 

order of their sensor number (as described in section iii). the 

numbers within each cell indicate the correlation 

coefficients for each measure, while the symbol above each 

number indicates the direction of the correlation (+ is 

positive, / is no significant correlation, and – is negative). 

the colors of the cells correspond to amount of agreement of 

correlation direction across measures; darker colors mean 

stronger sensor agreement, while lighter colors mean weaker 

sensor agreement. blue indicates sensor agreement towards 

a positive correlation, white indicates no sensor agreement 

or no significant correlations, and red indicates sensor 

agreement towards a negative correlation. all of the above 

correlations have a significance of p < 0.001, except for 

those marked after the correlation coefficient with ø (p < 

0.005), § (p < 0.01), and * (p < 0.05). 

First, we compared the sensor data for subjects’ 

handshakes at the beginning and end of the interaction, 

through an independent samples t-test. While tactile and 

face distance measurements did not show any significant 

change, hand temperatures were significantly higher during 

the latter handshake than the former one (robot palm 

thermistor: t(19463) = 36.203, p<0.001; thumb thermistor: 

t(19463) = 19.790, p<0.001; index finger thermistor: 

t(19463) = 20.367, p<0.001).  

We then looked at correlations in the data, first 

looking at correlations related to the technophobia 

questionnaire administered before the experiment. Lower 

levels of technophobia were correlated with higher hand 

temperatures, farther face distances, and higher tactile 

readings from five of the eight sensors. Looking at post-

experiment survey items related to technophobia, there was 

a correlation between lower technophobia and younger age 

(r=0.349, p<0.001), as well as lower technophobia and 

more engineering experience (r=0.090, p<0.001). 

Following a similar trend as technophobia, subjects of 

younger age tended to have higher temperatures and farther 

face distances. They also tended to have higher growth in 

their temperatures over the course of the experiment, in five 

out of six of the measures of temperature growth. 

Interestingly, while majoring in engineering was correlated 

with a lower level of technophobia, subjects who did not 

major in engineering tended to more closely match the 

pattern of sensor data linked with low technophobia: higher 

temperatures, higher temperature growth over time in five 

measures, and farther face distances. However, like those 

with technophobia, non-engineers had lower tactile 

measurements from five out of eight of the sensors.  

We then looked at correlations between the sensor 

data and the post-questionnaire. Subjects who rated the 

robot higher as being “not scary” (versus “scary”) tended to 

have higher temperatures, farther face distances, and higher 

temperature growth on four measures. Subjects who rated 

the interaction with the robot as feeling “meaningful” 

(versus “meaningless”) also had higher temperatures and 

higher temperature growth on five measures, but had closer 

face distances. In the open-ended portion of the post-

questionnaire, subjects were asked, “how did touching the 
robot affect your feelings towards it?” the responses were 

coded blindly for being positive, neutral, or negative. from 
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this coding, there was a significant correlation between 

people who gave more positive responses and higher 

temperatures and higher tactile readings on seven measures. 

however, there was also less temperature growth for these 

subjects in four measures. 

IV. DISCUSSION 

 

Hand temperature stood out as the sensor 

measurement with the clearest tendencies. as expected, hand 

temperature tended to increase across the experiment, and 

was greater during the last handshake than the first one. this 

is likely due to a natural warming up from using one’s 

hands, but could also indicate “warming up to,” or feeling 

closer with, the robot over time. across all measures, hand 

temperature was most closely linked to the survey data, with 

positive feelings such as enjoying contact with the robot or 

finding the robot not scary resulting in higher temperatures, 

while negative emotions such as technophobia or finding the 

experiment meaningless were linked with lower 

temperatures. this overall pattern of warmer temperatures 

reflecting positive feelings in an interaction follows the 

same pattern found in a separate study linking sensor data to 

behavioral data [11], and has been supported by psychology 
research [6,7]. younger age was also linked to lower 
technophobia and higher temperature. interestingly, 

engineers tended to have lower hand temperatures versus 

non-engineers during the interaction. this could be the result 

of having too much knowledge that may “demystify” and 

“objectify” the robot. people with too much engineering 

background may know too well how the robot is working, 

and interact with it as a toy rather than as a social partner. a 

similar pattern of engineering background resulting in 

negative sensor data tendencies has been found in our 

previous research [11]. there were also correlations in the 

post-questionnaire that seemed to reflect engineers’ 

objectification of the robot. in the post-questionnaire, 

subjects were asked to give the robot a name, which were 

then blindly coded by the experimenter as being a human 

name (for example “timmy”) or a robotic name (for example 

“robocop”). subjects with an engineering background were 

significantly less likely to give the robot a human name 

(t(140095)=79.85, p<0.001). they also rated the robot as 

more “machine-like” than “human-like” versus their non-

engineering counterparts (t(140095)=85.66, p<0.001).

   

Along with temperature, there were also strong 

correlations related to the temperatures’ changes over time. 

in general, there were the same positive tendencies: finding 

the robot “not scary,” finding the interaction “meaningful,” 

a non-engineering background, and younger age were 

correlated with higher temperature growth over time. being 

a non-engineer had an especially high correlation with 

temperature growth, possibly indicating drastic “warming 

up” to a technology that they were initially inexperienced 

with. surprisingly, feeling a positive reaction to touching the 

robot had an opposite tendency, and was correlated with 

lower temperature growth. this could have resulted from a 

number of possible explanations. these subjects who had a 

positive reaction to touching the robot tended to have higher 

starting hand temperatures before the experiment (palm: 

r=0.102, p<0.001; back: r=0.144, p<0.001). their starting 

temperatures could have been higher because of initial 

positive feelings towards the experiment, or perhaps a 

generally relaxed state. this also means that there was less 

room for temperature growth, compared with the subjects 

with the negative reaction to the robot’s touch. however, the 

lower temperature growth could also be caused by these 

subjects quickly acclimating to the robot’s touch, or a data-

related cause (as only four out of six measures indicated 

lower growth). further investigation is needed to fully 

understand how temperature growth indicates general 

feelings and changes in feelings towards robots during an 

interaction. face distance also stood out as a measure 
linked to the questionnaire data. lower technophobia, a non-

engineering background, lower age, and finding the 

experiment “not scary” tended to have farther face 

distances. these results match previous findings on robot 

perception and personal space [17]. face distance from the 

robot may be difficult to draw conclusions from, as several 

potential factors can affect face distance. for example, 

people afraid of the robot (such as fear of getting hurt or 

breaking the robot) or people disinterested in the experiment 

may take a farther distance from the robot. however, the 

results in this study show that people who are afraid of 

technology in fact get closer to the robot than those who are 

not. getting too close to the robot can also indicate a lack of 

affordance of “personal space” to the robot, and thus a form 

of objectification of the robot. for example, one subject was 

so interested in the robot’s machinery that the subject 

forcefully hit the robot to see how its auto balancing reacted. 

Subjects who rated the interaction as “meaningful” 

showed an opposite pattern from the other pro-robot 

questionnaire items, and had closer distances to the robot 

than those who found the study “meaningless”. we 

conjecture that the measure of “meaningful” versus 

“meaningless” is also a measure of the subject’s interest in 

the study, and perhaps subjects who found the experiment 

meaningless were less engaged and did not come close to 

the robot. thus, we believe there are two factors affecting a 

subject’s face distance to the robot in opposing directions: 

their objectification of the robot and their engagement in the 

task. while it is difficult to interpret face distance 

measurements only, when combined with temperature and 

temperature growth measurements, they may create a 

stronger picture of the user’s feelings. 
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Tactile measurements also showed some patterns 

relating to the survey data. higher technophobia was linked 

with lower tactile measurements, which likely reflects a 

resistance to interacting with the robot. on the other hand, 

subjects with an engineering background had higher tactile 

measurements – likely because they were used to interacting 

with similar machinery, and were closely inspecting the 

robot’s architecture. subjects who said they benefitted from 

the robot’s touch also tended to have higher tactile 

measurements, indicating that these subjects were 

potentially more eager to touch the robot. while these tactile 

correlations seem to have meaningful links to the subjects’ 

feelings about the robot, tactile measurements had some of 

the weakest correlations. No questionnaire items resulted in 

significant correlations in the same direction in all eight 

tactile sensors, and only one resulted in correlations in seven 

out of eight (the item on how touching the robot affected the 

subject). overall, tactile pressure readings may be useful as 

additional measurements for a larger repertoire of sensor 

data, but do not act as strong evidence in interpreting a 

subject’s feelings towards an interaction with a robot.while 

there were many significant correlations, some measures 

and questions were less effective.  

Questionnaire items not reported in this study did 

not have strong sensor data correlations, such as one item 

asking the subject to circle personality adjectives that they 

would attribute to the robot. sensor data likely represents 

only a subset of feelings a subject may feel towards a robot, 

and identifying which sensors match with which specific 

subsets will be an important next step. in terms of sensor 

measurements, force data on the arm had no clear tendencies 

for any questionnaire item. however, data taken by grasping 

the hand (tactile and temperature data) seemed to be enough 

to make connections with the questionnaire data. there is 

also the question that while all of the above correlations are 

very significant, many of their correlation coefficients are 

not very high. this means that while it may be difficult to 

predict a user’s feelings just based on one of these measures, 

there is still a significant relationship between the survey 

data and the sensor data. there are enough significant 

correlations showing the same tendencies, matching those in 

previous studies [11] to avoid the possibility of “data 

dredging”. ultimately, these sensors can be very sensitive, 

and so a combination of several measurements is key to 

being able to interpret subjects’ feelings towards a robot.  

overall, the sensor measurements of temperature, 

temperature growth, tactile force, and face distance seem to 

be possible candidates to be used as new, objective 

measures for hri experiments. most sensors are inexpensive, 

small, and easy to attach – allowing the experimenter to 

instantly be able to take gigabytes of data about any 

interaction with the robot. this study demonstrates the 

particular effectiveness of temperature sensors on the palm 

and fingers of a robot’s hand as a natural sensor interface. 

for future research, skin conductance sensors could provide 

additional evidence of user stress, although current sensors 

are limited in terms of size and data consistency. 

While these correlations show general tendencies 

as individual differences are factored out by the large 

number of diverse subjects  the next step is to focus this 

research on the individual. if a robot could use a learning 

model to assess a user’s feelings and stress in real-time 

based on user baseline information, then the robot could 

dynamically adapt to the user. these data measurements can 

also be used in place of or in conjunction with survey and 

behavioral data during an hri experiment, to look at 

demographic differences in hri or to compare reactions to 

different robot behaviors. it will also be important to 

investigate other sensor measurements that can still be 

natural and discreet but add to the picture of how a user 

feels towards a robot. 

 

V. CONCLUSION 

 

This study proposed and explored a methodology 

by which sensor data from a humanoid robot taken during 

an interaction could be used to measure users’ reactions to 

the robot. Significant correlations between these sensor data, 

users’ technophobia scores, and a post-experiment survey 

confirm that sensor data – particularly hand temperature, 

temperature growth, face distance, and tactile pressure do 

act as biosignal measurements, and do reflect the user’s 

psychological state. Specifically, it appears that higher hand 

temperature, higher temperature growth, higher tactile 

measurements, and farther face distances may correspond to 

more positive reactions to a robot. This methodology could 

potentially be used as an objective measure to support 

survey data taken during hri experiments. In the future, 

experiments could use this methodology to look at 

demographic differences in hri, and also to develop 

predictive models of a user’s changing feelings towards a 

robot. 
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