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Abstract— Independent mobility is core to being able to per-form activities of daily living by oneself. However, powered 

wheelchairs are not an option for a large number of people who are unable to use conventional interfaces, due to severe motor–

disabilities. For some of these people, non–invasive brain– computer interfaces (BCIs) offer a promising solution to this interaction 

problem and in this article we present a shared control architecture that couples the intelligence and desires of the user with the 

precision of a powered wheelchair. We show how four healthy subjects are able to master control of the wheelchair using an 

asynchronous motor–imagery based BCI protocol and how this results in a higher overall task performance, compared with 

alternative synchronous P300–based approaches 
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I. INTRODUCTION 

 

Millions of people around the world suffer from 

mobility impairments and hundreds of thousands of them 

rely upon powered wheelchairs to get on with their activities 

of daily living [1]. However, many patients are not 

prescribed powered wheelchairs at all, either because they 

are physically unable to control the chair using a 

conventional interface, or because they are deemed 

incapable of driving safely [2].Consequently, it has been 

estimated that between 1.4 and 2.1 million wheelchair users 

might benefit from a smart powered wheelchair, if it were 

able to provide a degree of additional assistance to the driver 

[3]. 

In our work with brain–actuated wheelchairs, we 

target a population who are—or will become—unable to use 

conventional interfaces, due to severe motor–disabilities. 

Noninvasive brain–computer interfaces (BCIs) offer a 

promising new interaction modality that does not rely upon 

a fully functional peripheral nervous system to mechanically 

interact with the world and instead uses the brain activity 

directly. However, mastering the use of a BCI, like with all 

new skills, does not come without a few challenges. 

Spontaneously performing mental tasks to convey  

one’s intentions to a BCI can require a high level of 

concentration, so it would result in a fantastic mental 

workload, if one had to precisely control every movement of 

the wheelchair. Furthermore, due to the noisy nature of 

brain signals, we are currently unable to achieve the same 

information rates that you might get from a joystick, which 

would make it difficult to wield such levels of control even 

if one wanted to. 

 

 

Thankfully, we are able to address these issues 

through the use of intelligent robotics, as will be discussed. 

Our wheelchair uses the notion of shared control to couple 

the intelligence of the user with the precise capabilities of a 

robotic wheelchair, given the context of the surroundings 

[4]. It is this synergy, which begins to make brain–actuated 

wheelchairs a potentially viable assistive technology of the 

not–so–distant future. 

In this paper we describe the overall robotic 

architecture of our brain–actuated wheelchair. We begin by 

discussing the brain computer interface, since the human is 

central to our design philosophy. Then, the wheelchair 

hardware and modifications are described, before we 

explain how the shared control system fuses the multiple 

information sources in order to decide how to execute 

appropriate manoeuvres in cooperation with the human 

operator. Finally, we present the results of an experiment 

involving four healthy subjects and compare them with 

those reported on other brain–actuated wheelchairs. We find 

that our continuous control approach offers a very good 

level of performance, with experienced BCI wheelchair 

operators achieving a comparable performance to that of a 

manual benchmark condition. 

 

II. BRAIN COMPUTER INTERFACES (BCI) 

 

The electrical activity of the brain can be 

monitored in real time using an array of electrodes, which 

are placed on the scalp in a process known as 

electroencephalography (EEG).In order to bypass the 

peripheral nervous system, we need to find some reliable 
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correlates in the brain signals that can be mapped to the 

intention to perform specific actions. In the next 

two subsections, we first discuss the philosophy of different 

BCI paradigms, before explaining our chosen asynchronous 

implementation for controlling the wheelchair. 

 

A. The BCI Philosophy 

 

Many BCI implementations, rely upon the subject 

attending to visual stimuli, which are presented on a screen. 

Consequently, researchers are able to detect a specific 

event–related potential in the EEG, known as the P300, 

which is exhibited 300 ms after a rare stimulus has been 

presented. For example, in one P300–based BCI wheelchair, 

the user is presented with a 3*3 grid of possible destinations 

from a known environment (e.g. the bathroom, the kitchen 

etc., within the user’s house), which are highlighted in a 

standard oddball paradigm [5]. The user then has to focus on 

looking at the particular option to which they wish to drive. 

Once the BCI has detected their intention, the wheelchair 

drives autonomously along a predefined route and the user 

is able to send a mental emergency stop command. 

(if required) with an average of 6 seconds delay. 

Conversely, another BCI wheelchair, which is also based 

upon the P300 paradigm doesn’t restrict the user to 

navigating in known, pre–mapped environments. Instead, in 

this design, the user is able to select subgoals (such as close 

left, far right, mid–ahead etc.) from an augmented reality 

matrix superimposed on a representation of the surrounding 

environment [6].To minimise errors (at the expense of 

command delivery time),after a subgoal has been pre–

selected, the user then has to focus on a validation option. 

This gives users more flexibility in terms of following 

trajectories of their choice, however, the wheelchair has to 

stop each time it reaches the desired sub–goal and wait for 

the next command (and validation) from the user. 

Consequently, when driving to specific destinations, the 

wheelchair was stationary for more time than it was actually 

moving (as can be seen in Fig. 8 of [6]). 

Our philosophy is to keep as much authority with 

the users as possible, whilst enabling them to dynamically 

generate natural and efficient trajectories. Rather than using 

external stimuli to evoke potentials in the brain, as is done in 

the P300 paradigm, we allow the user to spontaneously and 

asynchronously control the wheelchair by performing a 

motor imagery task. Since this does not rely on visual 

stimuli, it does not interfere with the visual task of 

navigation. Furthermore, when dealing with motor–disabled 

patients, it makes sense to use motor imagery, since this 

involves a part of the cortex, which may have effectively 

become redundant; i.e. the task does not interfere with the 

residual capabilities of the patient. 

In our motor imagery (MI) paradigm, the user is 

required to imagine the kinaesthetic movement of the left 

hand, the right hand or both feet, yielding three distinct 

classes. During the BCI training process, we select the two 

most discriminable classes to provide a reliable mapping 

from the MI tasks to control actions (e.g imagine left hand 

movements to deliver a turn left command and right hand 

movements to turn right).To control our BCI wheelchair, at 

any moment, the user can spontaneously issue a high–level 

turn left or turn right command. When one of these two 

turning commands is not delivered by the user, a third 

implicit class of intentional non–control exists, whereby the 

wheelchair continues to travel forward and automatically 

avoid obstacles where necessary. Consequently, this reduces 

the user’s cognitive workload. The implementation will be 

discussed in Section IV-D. 

 

B. The BCI Implementation  

Since we are interested in detecting motor imagery, 

we acquire monopolar EEG at a rate of 512 Hz from the 

motor cortex using 16 electrodes (see Fig. 1). The electrical 

activity of the brain is diffused as it passes through the skull, 

which results in a spatial blur of the signals, so we apply a 

Laplacian filter, which attenuates the common activity 

between neighbouring electrodes and consequently 

improves Fig. 1: The active electrode placement over the 

motor cortex for the acquisition of EEG data, based on the 

International 10-20 system (nose at top). our signal to noise 

ratio. After the filtering, we estimate the power spectral 

density (PSD) over the last second, in the band 4–48 Hz 

with a 2 Hz resolution [8]. It is well know that when one 

performs motor imagery tasks, corresponding parts of the 

motor cortex are activated, which, as a result of event 

related desynchronisation, yields a reduction in the muband 

power (8–13 Hz) over these locations (e.g. the right hand 

corresponds to approximately C1 and the left hand to 

approximately C2 in Fig. 1). In order to detect these 

changes, we estimate the PSD features every 62.5 ms (i.e. 

16 times per second) using the Welch method with 5 

overlapped (25%) Hanning windows of 500 ms. 

Every person is different, so we have to select the 

features that best reflect the motor–imagery task for each 

subject. Therefore, canonical variate analysis (CVA) is used 

to select subject–specific features that maximize the 

separability between the different tasks and that are most 

stable (according to cross validation on the training data) 

[9]. Decisions with a confidence on the probability 

distribution that are below a given rejection threshold are 

filtered out. Finally, evidence about the executed task is 

accumulated using an exponential smoothing probability 

integration framework [11]. This helps to prevent 

commands from being delivered accidentally. 

III. WHEELCHAIR HARDWARE 

Our brain controlled wheelchair is based upon a 

commercially available mid–wheel drive model by Invacare 

that we have modified. First, we have developed a remote 

joystick module that acts as an interface between a laptop 

computer and the wheelchair’s CANBUS–based control 
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network. This allows us to control the wheelchair directly 
from a laptop computer. Second, we have added a pair of 

wheel–encoders to the central driving wheels in order to 
provide the wheelchair with feedback about its own motion. 

Third, an array of ten sonar sensors and two webcams have 

been added to the wheelchair to provide environmental 

feedback to the controller. Fourth, we have mounted an 

adjustable 8‖ display to provide visual feedback to the user. 

Fifth, we have built a power distribution. 

As shown in the figure 2 below, the wheelchair’s 

knowledge f the environment is acquired by the fusion of 

complementary sensors and is represented as a probabilistic 

occupancy grid. The user is given feedback about the 

current status of the BCI and about the wheelchair’s 

knowledge of the environment. unit, to hook up all the 

sensors, the laptop and the display to the wheelchair’s 

batteries. The complete BCI wheelchair platform is shown 

in Fig. 2. The positions of the sonars are indicated by the 

white dots in the centre of the occupancy grid, whereas the 

two webcams are positioned forward–facing, directly above 

each of the front castor wheels. 

 

 
Fig. 2: The complete brain–actuated wheelchair 

A.Wheel–encoders 

The encoders return 128 ticks per revolution and 

are geared up to the rim of the drive wheels, resulting in a 

resolution of 2.75*10^3 metres translation of the inflated 

drive wheel per encoder tick. We use this information to 

calculate the average velocities of the left and right wheels 

for each time–step. Not only is this important feedback to 

regulate the wheelchair control signals, but we also use it as 

the basis for dead reckoning (or estimating the trajectory 

that has been driven). We apply the simple differential drive 

model derived in [12]. To ensure that the model is always 

analytically solvable, we neglect the acceleration 

component. In practice, since in this application we are only 

using the odometry to update a 6m*6m map, this does not 

prove to be a problem. However, if large degrees of 

acceleration or slippage occur and the odometry does not 

receive any external correcting factors, the model will begin 

to accumulate significant errors [12]. 

 

IV. SHARED CONTROL ARCHITECTURE 

 

The job of the shared controller is to determine the 

meaning of the vague, high–level user input (e.g. turn left, 

turn right, keep going straight), given the context of the 

surrounding environment [4]. We do not want to restrict 

ourselves to a known, mapped environment—since it may 
change at any time (e.g. due to human activities)—so the 
wheelchair must be capable of perceiving its surroundings. 
Then, the shared controller can determine what actions 

should be taken, based upon the user’s input, given the 

context of the surroundings. The overall robotic shared 

control architecture is depicted in Fig. 3 and we discuss the 

perception and planning blocks of the controller over then 

next few subsections. 

 
Fig. 3: The user’s input is interpreted by the shared 

controller given the context of the surroundings. The 

environment is sensed using a fusion of complementary 

sensors, then the shared controller generates appropriate 

control signals to navigate safely, based upon the user input 

and the occupancy grid. 

 

A. Perception 

 

Unlike for humans, perception in robotics is 

difficult. To begin with, choosing appropriate sensors is a 

not a trivial task and tends to result in a trade–off between 

many issues, such as: cost, precision, range, robustness, 

sensitivity, complexity of post-processing and so on. 

Furthermore, no single sensor by it-self seems to be 

sufficient. For example, a planar laser scanner may have 

excellent precision and range, but will only detect a table’s 

legs, reporting navigable free space between them. Other 

popular approaches, like relying solely upon cheap and 
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readily available sonar sensors have also been shown to be 

unreliable for such safety–critical applications [14]. To 

overcome these problems, we propose to use the synergy of 

two low–cost sensing devices to compensate for each 

other’s drawbacks and complement each other’s strengths. 
Therefore, we use an array of ten close–range sonars, with a 

wide detection beam, coupled with two standard off–the–

shelf USB webcams, for which we developed an effective 

obstacle sensing devices to compensate for each other’s 

drawbacks and complement each other’s strengths. 

Therefore, we use an array of ten close–range sonars, with a 

wide detection beam, coupled with two standard off–the–

shelf USB webcams, for which we developed an effective 

obstacle. 

 

B. Computer Vision–Based Obstacle Detection 

 
The obstacle detection algorithm is based on 

monocular image processing from the webcams, which ran 

at 10Hz. The concept of the algorithm is to detect the floor 

region and label everything that does not fall into this region 

as an obstacle; we follow an approach similar to that 

proposed in [13], albeit  with monocular vision, rather than 

using a stereo head. The first step is to segment the image 

into constituent regions. For this, we use the watershed 

algorithm, since it is fast enough to work in real–time [15]. 

We take the original image (Fig 4a) and begin by applying 

the well–known Canny edge–detection, as shown in Fig. 4b. 

A distance transform is then applied, such that each pixel is 

given a value that represents the minimum Euclidean 

distance to the nearest edge. This results in the relief map 

shown in Fig. 4c, with a set of peaks (the farthest points 

from the edges) and troughs (the edges themselves). The 

watershed segmentation algorithm itself is applied to this 

relief map, using the peaks as markers, which results in an 

image with a (large) number of segments (see Fig. 4d). To 

reduce the number of segments, adjacent regions with 

similar average colours are merged. Finally, the average 

colour of the region that has the largest number of pixels 

along the base of the image is considered to be the floor. All 

the remaining regions in the image are classified either as 

obstacles or as navigable floor, depending on how closely 

they match the newly–defined floor colour. The result is 

shown in Fig. 4e, where the detected obstacles are 

highlighted in red. Since we know the relative position of 

the camera and its lens distortion parameters, we are able to 

build a local occupancy grid that can be used by the shared 

controller, as is described in the following section. 

 

C. Updating the Occupancy Grid 

 

At each time–step, the occupancy grid is updated to 

include the latest sample of sensory data from each sonar 

and the output of the computer vision obstacle detection 

algorithm. We extend the histogram grid construction 

method described in [16], by fusing information from 

multiple sensor types into the same occupancy grid. For the 

sonars, we consider a ray to be emitted from each device 

along its sensing axis. The likelihood value of each 

occupancy grid cell that the ray passes through is 

decremented, whilst the final grid cell (at the distance value 

returned by the sonar) is incremented. The weight of each 

increment and decrement is determined by the   confidence 

we have for each sensor at that specific distance. For 

example, the confidence of the sonar readings being correct 

in the range 3 cm to 50 cm is high, whereas outside that 

range it is zero (note that the sonars are capable of sensing 

up to 6 m, but given that they are mounted low on the 

wheelchair, the reflections from the ground yield a practical 

limit of 0.5 m). Similarly, the computer vision algorithm 

only returns valid readings for distances between 0.5m and 3 

m. Using this method, multiple sensors and sensor 

modalities can  be integrated into the planning grid. As the 

wheelchair moves around the environment, the information 

from the wheel–encoder based dead–reckoning system is 

used to translate and rotate the occupancy grid cells, such 

that the wheelchair remains at the centre of the map. In this 

way, the cells accumulate evidence over time from multiple 

sensors and sensor modalities. As new cells enter the map at 

the boundaries, they are set to ―unknown‖, or 50% 

probability of being occupied, until new occupancy 

evidence (from sensor readings) becomes available. Figure 

above shows The obstacle–detection algorithm is based 

upon a computer vision approach prosed in [13], but 
adapted for monocular vision. The floor is deemed to be the 

largest region that touches the base of the image, yet does 

not cross the horizon. 

In the current implementation, the user is not able 

to stop the chair in free space, instead the chair will stop 

when it has docked to a potential target. In future this 

control strategy could easily be extended to include an 

additional BCI  command (or another biosignal, in the case 

of a hybrid approach) to implement an explicit stop signal. 

 

V. EVALUATION 

 

We demonstrate that both natıve and experienced 

BCI wheelchair operators are able to complete a navigation 

task successfully. Furthermore, unlike in P300 based 

systems, not only was the user in continuous spontaneous 

control of the wheelchair, but the resultant trajectories were 

smooth and intuitive (i.e. no stopping, unless there was an 
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obstacle, and users could voluntarily control the motion at 

all times).  

 

A.Experiment Protocol 

 

As a benchmark, the subject was seated in the 

wheelchair and was instructed to perform an online BCI 

session, before actually driving. In this online session, the 

wheelchair remained stationary and the participant simply 

had to perform the appropriate motor imagery task to move 

a cursor on the wheelchair screen in the direction indicated 

by a cue arrow. There was a randomized balanced set of 30 

trials, separated by short resting intervals, which lasted 

around 4–5 mins, depending on the performance of the 

subject. After the online session, participants were given 

15–30 minutes to familiarise themselves with driving the 

wheelchair: Trajectories followed by subject s3 on one of 

the manual benchmark trials (left), compared with one of the 

BCI trials (right). These trajectories were reconstructed from 

odometry using the independent reconstruction method [19]. 

Using each of the control conditions: a two button manual 

input, which served as a benchmark, and the BCI system. 

Both input paradigms allowed the users to issue left and 

right commands at an inter–trial interval of one second. The 

actual task was to enter a large open–plan room through a 

doorway from a corridor, navigate to two different tables, 

whilst avoiding obstacles and passing through narrow 

openings (including other non–target tables, chairs, 

ornamental trees and a piano), before finishing by reaching a 

second doorway exit of the room when approaching the 

target tables, the participants were instructed to wait for the 

wheelchair to finish docking to the table, then once it had 

stopped they should issue a turning command to continue on 

their journey. The trials were counter–balanced, such that 

users began with a manual trial, then performed two BCI 

trials and finished with another manual trial. 

 

B. Results and Discussion 

 

All subjects were able to achieve a remarkably good 

level of control in the stationary online BCI session, as can 

be seen in Table I. Furthermore, the actual driving task was 

completed successfully by every subject, for every run and 

no collisions occurred. A comparison between the typical 

trajectories followed under the two conditions is shown in 

Fig 5. The statistical tests reported in this section are paired 

Student’s tests. A great advantage that our asynchronous 

BCI wheelchair brings, compared with alternative 

approaches like the P300 based chairs, is that the driver is in 

continuous control of the wheelchair. This means that not 

only does the wheelchair follow natural trajectories, which 

are determined in real time by the user (rather than 

following predefined ones, like in [5]), but also that the 

chair spends a large portion of the navigation time actually 

moving. This is not the case with some state–of–the–art 

P300–controlled wheelchairs, where the wheelchair has to 

spend between 60% and 80% of the manoeuvre time 

stationary, waiting for input from the user. In terms of path 

efficiency, there was no significant difference (p = 0:6107) 

across subjects between the distance travelled in the manual 

benchmark condition (43.1*8.9 m) and that in the BCI 

condition (44.9*4.1 m). Although the actual environments 

were different, the complexity of the navigation was 

comparable to that of the tasks investigated on a P300 based 

wheelchair in [6]. In fact, the average distance travelled for 

our BCI condition (44.9*4.1 m), was greater than that in the 

longest task of [6] (39.3*1.3 m), yet on average our 

participants were able to complete the task in 417.6*108.1 s, 

which was 37% faster than the 659*130 s reported in [6]. 

This increase in speed might (at least partly) be attributed to 

the fact that our wheelchair was not stationary for such a 

large proportion of the trial time. Across subjects, it took an 

average of 160.0 s longer to complete the task under the BCI 

condition (see Fig. 5, p = 0:0028). On brighter days, some 

shadows and reflections from the shiny wooden floor caused 

the wheelchair to be cautious and slow down earlier than on 

dull days, until the so nars confirmed that actually there was 

not an obstacle present. Therefore, it makes more sense to 

do a within subjects comparison, looking at the performance 

improvement or degradation on a given day, rather than 

comparing absolute performance values between subjects on 

different days. From Figure below it can be seen that for the 

inexperienced users (s1 and s2), there was some discrepancy 

in the task completion time between the benchmark manual 

condition and the BCI condition. However, for the 

experienced BCI wheelchair users (s3 and s4), the 

performance in the BCI condition is much   closer to the 

performance in the manual benchmark condition. This is 

likely to be due to the fact that performing a motor imagery 

task, whilst navigating and being seated on a moving 

wheelchair, is much more demanding than simply moving a 

cursor on the screen (c.f. the stationary online BCI session 

of Table I). In particular, aside from the increased workload, 

when changing from a task where one has to deliver a 

particular command as fast as possible following a cue, to a 

task that involves navigating asynchronously in a 

continuous control paradigm, the timing of delivering 

commands becomes very important. In order to drive 

efficiently, the user needs to develop a good mental model 

of how the entire system behaves (i.e. the BCI, coupled with 

the wheelchair) [20].Clearly, through their own experience, 

subjects s3 and s4 had developed such mental models and 

were therefore able to  

 

TABLE I: Confusion matrices of the left and right classes 

and accuracy for the online session, for each subject, before 

actually controlling the wheelchair. 



 

 

International Journal of Engineering Research in Electrical  and Electronic 

Engineering (IJEREEE) Vol 2, Issue 1, January 2016 
  

        All Rights Reserved © 2016IJEREEE 22 

 

 

 

 
Fig. 5: The average time required to complete the task for 

each participant in a benchmark manual condition (left 

bars) and the BCI condition (right bars). The wheelchair 

was stationary, waiting user input, only for a small 

proportion of the trial. 

Anticipate when they should begin performing a 

motor imagery task to ensure that the wheelchair would 

execute the desired turn at the correct moment. Furthermore, 

they were also more experienced in refraining from 

accidentally delivering commands (intentional non–control) 

during the periods where they wanted the wheelchair to 

drive straight forwards and autonomously avoid any 

obstacles. Conversely, despite the good online BCI 

performance of subject’s s1 and s2, they had not developed 

such good mental models and were less experienced in 

controlling the precise timing of the delivery of BCI 

commands. Despite this, the use of shared control ensured 

that all subjects, whether experienced or not, could achieve 

the task safely and at their own pace, enabling continuous 

mental control over long periods of time (>400 s, almost 7 

minutes). gives users greater flexibility and authority over 

the actual trajectories driven, since it allowed users to 

interact with the wheelchair spontaneously, rather than 

having to wait for external cues as was the case with [5], [6]. 

Moreover, combining our BCI with a shared control 

architecture allowed users to dynamically produce intuitive 

and smooth trajectories, rather than relying on predefined 

routes [5] or having to remain stationary for the majority of 

the navigation time [6]. 

Although there was a cost in terms of time for 

inexperienced users to complete the task using the BCI input 

compared with a manual benchmark, experienced users 

were able to complete the task in comparable times under 

both conditions. This is probably as a result of them 

developing good mental models of how the coupled BCI–

shared control system behaves. In summary, the training 

procedure for spontaneous motor imagery–based BCIs 

might take a little longer than that for stimulus–driven P300 
systems, but ultimately it is very rewarding. After learning 

to modulate their brain signals appropriately, we have 

demonstrated that both experienced and inexperienced users 

were able to master a degree of continuous control that was 
sufficient to safely operate a wheelchair in a real world 

environment. They were always successful in completing a 

complex navigation task using mental control over long 

periods of time. One participant remarked that the motor–

imagery BCI learning process is similar to that of athletes or 

musicians training to perfect their skills: when they 

eventually succeed they are rewarded with a great sense of 

self–achievement. 
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