
ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

 Vol 3, Issue 11, November 2017

 All Rights Reserved © 2017 IJEREEE 100

Design of Reliable Low-Power Multiplier Using

Fault-Tolerant Technique

[1]
 M.M.Samreen

M.tech: Reliability Engineering

JNTU Ananthapuramu

Abstract: -- A Reliable low-power and fast accelerated multiplier is implemented by using a redundant fault tolerant technique,

“Input Output Logic Based”(IOLB) ,this technique is implemented in the fast accelerated dada multiplier is proposed by

implementing two algorithms i.e. partial products are obtained in to two parts and integration of a designed hybrid final adder with

dada multiplier and obtained partial products are also implemented by using array based multiplier ,tradeoffs between these two

multipliers are compared with and without IOLB logic by using the fault tolerant technique power of the multiplier is reduced to 31.1

%, area overhead of the gate’s required in the multiplier is 23.2% ,speed of the multiplier is increased to 40.1%.

Keywords — Redundant fault-tolerant technique,"input-output logic based",column compression.

I. INTRODUCTION

In digital signal processing and various applications, digital

multipliers play a vital role. Reliability is defined as where the

probability of failure is one percent. So, it is important to

design a reliable multiplier To increase the reliability of the

multiplier redundant fault- tolerant technique input-output

based logic is implemented in the proposed multipliers parallel

structure based Dadda multiplier and array-based multiplier, in

the array based multiplier minimization is done by cutting

down the bit size to N/2. In the array-based multiplier [1]

Baugh–Wooley algorithm was proposed to partition the partial

products and in the Dadda based multiplier partial products are

generated by parallel structures, In the parallel structure partial

products are arranged in N-rows and the reduction of the N-

row partial products to a height of one bit is done by grouping

it in two sets of three bit and two bit. By using HA and FA the

grouped 3-bit and 2-bit partial product computation is carried

out. This paper is organized as follows section II will describe

the algorithm proposed in the array based multiplier and how

the multiplication is performed and the design of parallel

structures, the generation of partial products by partitioning

technique is implemented and section III describes the

tradeoffs between an array based multiplier and a Dadda

multiplier, section IV describes the comparison between the

two multipliers with and without redundant fault tolerant

technique.

II. ALGORITHMS IN THE PROPOSED MULTIPLIERS

A. Baugh_wooley algorithm based array multiplier

In the Baugh_wooley array multiplier multiplication is done

by partitioning the partial products in two subsets as

ICV(input correction vectors) and MICV(minor input

correction vectors) upon which eliminating the weighted

partial product according to the algorithm, based on the

algorithm the full adders which are placed in the multiplier are

eliminated and replaced with equivalent logic gates ,so that the

no of transistors required to design a full adder gets reduced,

but the array based multipliers are not high accelerated so, we

go for either dadda or Wallace multiplier, comparatively

dadda multiplier is the high speed multiplier, is designed by

the partitioning of partial products in to two parts as part 0 and

part 1 by following the algorithm consider two n-bit operands

A and B for NxN baugh_wooley array multiplier which forms

the partial products of a matrix of the n rows and 2n-1

columns as shown in the fig1(a)

B.Computation of the partial products in dadda multiplier

In this work, the proposed dadda multiplier partition of partial

products is done in to part 0 and part 1, after partitioning in to

two parts and in each part a partial product is grouped in to

three bit and two-bit sized.So, that the 3-bit sized partial

products are computed using fa and the 2-bit sized is

computed by using ha also called as (2, 2) counter.

Computation of the partial products by using HA (Half Adder)

and FA (Full Adder) the different rows is classified with the

different colors shown in fig.2 and fig.3 Here the partial sum

and carry is denoted by s and c E.g. In fig.2 in the computation

of the partial products for part 0 consider the bit positions of 6

and 13 which are computed by using ha i.e. (2, 2) counter s0

and c0 are generated. The c0 is carried to the next column.

The bit positions of 7, 14 and 21 are computed using a fa i.e.

(3, 2) counter which generates the sum and carry as s1 and c1.

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 3, Issue 11, November 2017

 All Rights Reserved © 2017 IJEREEE 101

A

B

C

Fig 1.Partition of Partial Products into Two Parts Part 0 and

Part 1

Fig .2 and Fig.3 depicts the obtained partial products are of

height of one bit, it is obtained by adding the carry c1 of a

fa also called as (3, 2) counter is added to the next set of

(3, 2) counter set and the obtained partial products of

height of one-bit is computed by using carry look-ahead

adder final two rows of each part are summed using a carry

look-ahead adder

Fig 2.Computation of Partial Products Using HA and FA

Based On Dadda Approach.

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 3, Issue 11, November 2017

 All Rights Reserved © 2017 IJEREEE 102

The computation procedure for part 0 and part 1 is depicted in

fig.4 and the computation of partial products from part 0 and

part 1 are summed by using HA and FA. Fig2 and Fig.3 gives

the pictorial representation of dadda based approach p0,

p1denote the partial products obtained from part 0 and part

1.Numericals are indicated on the partial products obtained

from the outputs of part 0 and part 1. Outputs of the part 0 and

part 1 are computed independently in parallel.

Fig 3.Minimization of Partial Products of Part 1 Based

On Dadda Reduction Algorithm

The final computation of the partial products of part 0 and part

1 is done by using the ha and far which is known as (2, 2)

counters and (3, 2) counters and obtained partial products is

shown in fig 4

(a)

Fig 4.Computation of Partial Products Using HA and FA

(A) Computation of Part0 (B) Computation of Part1

Integration of a hybrid adder which is designed for dadda

multiplier is applicable in achieving the fast accelerated

multiplication. In the previous designs of the hybrid final

adder carry look ahead adder and carry select adder are

integrated. But due to the design of CLSA (carry select adder),

its area overhead occupancy is more. So, to achieve the

optimum performance a hybrid adder is proposed in this work

in this proposed hybrid adder design is done by the code

converter i.e. MBEC (Multiplexer With Binary to Excess 1

Converter) and ripple carry adder for the fast summation of

partial products originating from the PPST. By using the

MBEC adder it provides faster performance than Carry Save

Adder (CSA) and Carry Look Ahead (CLA) adder. Also, its

area overhead occupancy is less and low-power consumption

than Carry Select Adder (CSLA). Once each part of the

partial products from part 0a and part 1 to a height of one bit

obtained in two rows is as follows. By using RCA (Ripple

Carry Adder) computation of these two rows is done,

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 3, Issue 11, November 2017

 All Rights Reserved © 2017 IJEREEE 103

 P0[10]P0[9] P0[8]P[7]P[6]P[5]P[4]P[3]P[2]P[1]P[0]

p1 [15] p1 [14] p1 [13] p1 [12] p1 [11] p1 [10] p1 [9] p1 [8]

Once the partial products obtained from part 0 and part 1 the

partial products obtained from the part 0 i.e. p0 [7] to p0 [0]

i.e. p0 [7:0] are assigned as the final products as p [7:0],

partial products from p0 [10:8] are the extra carry bits

generating from part 0 and the partial products from part1

p1[15:8] is the carry part generated from part1 to find the

remaining final products p[15:8] an hybrid adder with the

integrated MBEC and RCA is used which is shown in fig 5.

A Single 5-bit multiplexer with binary to excess 1 converter is

used in the final 8-bit hybrid adder. If the bit size increases

then we require more no of MBEC such that each one requires

a selection input from the preceding carry of the MBEC, so to

generate the carry an additional block is developed to generate

carry MBECWC, the detailed structure of the MBEC is shown

Fig. 6.The BEC is used in the final adder design 16 bit and 32-

bit multipliers.

Fig 5.Integrated Hybrid Adder Of 8-bit dadda Multiplier

Fig 6.The Code Converter for 5-bit binary to excess 1 code

III.THE REDUNDANT FAULT-TOLERANT

TECHNIQUE USED IN THE PROPOSED

MULTIPLIER

The motivation of the proposed redundant fault-tolerant

technique i.e. Input-Output Logic Based (IOLB) is to generate

an error-free signal by assessing the output i.e. change in

output is caused by change in the input following system

stability i.e. Bounded Input Bounded Output(BIBO). By

assessing the changes in input and output signal a Xo red error

signal is generated with the output signal to yield the error-

free signal. The main objective of using the IOLB logic in the

multipliers is, multipliers are designed with the HA and FA

which again compromises of the logic gates a XOR, a NOT,

and an OR gate. So, as to get the fault-free outputs and system

to work reliably even though if there exists any fault in the

logic gates IOLB(input-output logic based) fault-tolerant

technique is implemented

III.1 NOT GATE

We shall now consider the case of a NOT gate to illustrate the

mechanism involved in designing the IOLB correction circuit.

Say A is its input and B is its output. In an error-free scenario,

if input A is ’1’, then B would be ’0’. However, say A is now

changed to ’0’ and there is no accompanied change in B (that

is, it stays at ’0’). Then, that indicates that there is an error,

since, in a NOT gate, a change in input is expected to bear a

change in the output too. Let us now examine a couple of

other cases of input-output pair transitions. If the pair (format:

’AB’) changes from ’01’ to ’00’, this means that the output

change has occurred without there being a change in the input.

This is again unexpected behavior for a normal NOT gate.

Similar would have been the case if the pair transitioned from

’10’ to ’11’.These above relations form the central idea in

designing the error correcting circuit. Suppose Ac is the

change in the input, Bc is the change in the output and E is the

error signal.

Fig 7.IOLB circuit for a NOT gate

For the computation of changes in variables, we take the XOR

of a variable with a delayed version of itself, thereby giving us

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 3, Issue 11, November 2017

 All Rights Reserved © 2017 IJEREEE 104

’1’ if there has been a change. The value of the delay is

arbitrary. While trying to compute BC from B, we need to take

care of the possibility of an error having occurred in the NOT

gate. If we just perform XOR of the delayed and current

values of B, we will get an erroneous Bc if the NOT gate is

error-affected (since B would be erroneous). Hence, if the

error signal E is ’1’ (indicating that the NOT gate is affected),

we take XOR with the NOT of delayed B for the computation

of Bc. A block diagram of an IOLB NOT gate is illustrated in

Fig. 7 and the IOLB circuit for the NOT gate is shown in Fig

8.

Fig 8.An IOLB Circuit Block Diagram for a NOT Gate

III.2 Exclusive OR (XOR) Gate

We now consider the case of a two-input XOR gate. Say A

and B are its inputs and S is its output. In an error-free

scenario, if both A and B are same, then S would be ’0’ and if

both are different then S would be ’1’. However, in the case of

both A and B are same and S is ’1’ or in the case of both A

and B are different and S is ’0’, that would mean there is an

error. Such a case will arise when an expected output change

does not succeed a change in an input/ when an unexpected

output change occurs, even without a change in inputs. We

shall now look at specific instances of the above cases. Say the

current state (format: ’ABS’) is ’000’. Suppose a transition

occurs from ’000’ to ’100’, this is unexpected because, in an

XOR gate, the output is expected to change following a

change in exactly in one of the input. Suppose a transition

occurs from ’000’ to ’001’, this is again unexpected, since, in

a XOR gate, the output cannot change without a change in its

inputs. Henceforth, we shall use c-subscripted symbols to

denote changes in variables. For instance, Xc denotes a change

in the variable X. In other words, Xc=’1’ means there has been

a change in X and Xc=’0’ means there hasn’t been a change in

X For arriving at changes in variables, we take the XOR of a

variable and its delayed version. However, like in the case of

the NOT gate, the computation of the Sc is not

straightforward. We resolve the problem in the same way as

was done in the case of the NOT gate: in the computation of

the Sc, we have used the NOT of delayed S if E = ’1’. For

producing the fault-free output, the error signal E is XOR-ed

with S. A complete picture is illustrated

Fig 9.Circuit Diagram for IOLB XOR Gate

IV.RTL(REGISTER TRANSFER LEVEL) SIMULATION

RESULTS OF THE PROPOSED MULTIPLIERS

The proposed multipliers, code work is written in the Verilog

hardware description language and simulation is carried out in

the native compiler of the cadence suite and in Xilinx 14.1 ISE

suite, and the simulation results of the array based multiplier

for 12-bit, 24-bit and dadda based multiplier for 8-bit, 16-bit,

32-bit is illustrated below and their schematics are illustrated

below

Fig 10.Schematic Of The Array Based 12-bit Multiplier

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 3, Issue 11, November 2017

 All Rights Reserved © 2017 IJEREEE 105

Fig 11.Schematic Of the Array Based 24-bit Multiplier

Fig 12.Schematic Of the Dadda Based 16-bit Multiplier

Fig 13.Schematic of the Dadda Based 32-Bit Multiplier

And the comparison of the proposed multipliers in the aspects

of area, power and delay is done with and without IOLB

(input-output logic based) which is shown in below tables and

also the comparison of the proposed regular dadda multiplier

with the partitioned hybrid multiplier and array-based is also

done

Table 1.An Array Based Multiplier

Bit length Area in

micrometer

Power in

microwatts

Delay in

nanoseconds

12*12 1102.05 502.411 240.7

24*24 1112.05 2207.4 1200.9

Table 2 .Dadda Based Multiplier with CLA Adder

Table 3. Dadda based Multiplier with Integrated Hybrid

Adder

Multiplier

NxN

Area

(m2)

Power

(W)

Delay

(ns)

8 bit

16 bit

32 bit

9144

30,577

107491

7.07

35.99

221.01

3.38

4.13

4.07

V. RESULT SUMMARY

The proposed dadda multiplier shows 5.2% lesser power

consumption compared to the array based multiplier. As the

bit size of the multiplier grows power requirement of the

dadda multiplier is reduced when compared to the array based

multiplier. A 32-bit Dadda multiplier requires only 4.7% less

power than the array-based multiplier. By implementing the

Redundant fault-tolerant technique for the multiplier reliability

of the system is increased to 68 %.

Multiplier

NxN

Area

(m2)

Power

(W)

Delay

(ns)

8 bit

16 bit

32 bit

8957

30,241

107,362

6.85

35.22

218.76

3.51

4.61

5.47

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 3, Issue 11, November 2017

 All Rights Reserved © 2017 IJEREEE 106

VI. CONCLUSION

The fast-accelerated multiplication has been achieved by

partitioning of the partial products into two parts i.e. part 0 and

part 1and computation of them is performed then with the

parallel adder. On analyzing the simulation results and

tabulation values of the area, power and speed-delay of the

proposed multipliers shows that there is an improvisation in

the speed-delay and power of the dadda based multiplier

compared with the array-based multiplier

REFERENCES

1. I-chyn Wey,Chien-Chang Peng, and Feng-Yu Liao

“Reliable Low-power Multiplier Design Using Fixed

Width Replica Redundancy Block” IEEE trans,Very

Large Scale Integr.(VLSI) syst vol 23 No 1 .

2. E. E. Swartzlander, Jr. and G. Goto, "Computer

arithmetic," The Computer Engineering Handbook,

V. G. Oklobdzija, ed., Boca Raton, FL: CRC Press,

2002.

3. C. S. Wallace, “A Suggestion for a Fast Multiplier,”

IEEE Transactions on Electronic Computers, Vol.

EC-13, pp. 14-17, 1964.

4. Luigi Dadda, “Some Schemes for Parallel

Multipliers,” Alta Frequenza, Vol. 34, pp. 349-356,

August 1965

5. K.C. Bickerstaff, E.E. Swartzlander, M.J. Schulte,

Analysis of column compression multipliers,

Proceedings of 15th IEEE Symposium on Computer

Arithmeitc,2001.

6. W. J. Townsend, Earl E. Swartzlander and J.A.

Abraham, “A comparison of Dadda and Wallace

multiplier delays”, Advanced Signal Processing

Algorithms, Architectures and Implementations XIII.

Proceedings of the SPIE, vol. 5205, 2003, pages 552-

560

7. [7] B. Shim, S. Sridhara, and N. R. Shanbhag,

“Reliable low-power digitalsignal

processing via reduced precision redundancy,”

IEEE Trans.Very Large Scale Integr. (VLSI)

Syst., vol. 12, no. 5, pp. 497–510,May 2004.

