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Abstract:- Dynamic modeling and analysis of a self-voltage regulating, short shunt three-phase self-excited induction generator 

(SEIG) is undertaken in this paper. The derived d-q model of SEIG is implemented in terms of a simulation model to carry out its 

performance analysis under no-load and loading conditions. To assess the performance of a practically viable operation, the 

resistive-inductive (RL) load of 0.9 lagging power factor is considered for assessing SEIG performance. In order to establish the 

veracity of proposed analysis, the simulated results are experimentally verified. 

 

Index terms – Six-phase SEIG; Self excited induction generator; RL load; Short shunt; SEIG test rig 

 

 

I. INTRODUCTION    

  

Due to their squirrel cage construction, the self excited 

induction generators (SEIGs) offer rugged and fault tolerant 

operation which is the prime requirement in their field of 

application [1,2]. Foremost operating constraint associated 

with SEIGs is finding a tangible mean to fulfill their reactive 

power requirement [3]. Most conducive strategy in this 

regard has been to connect capacitances across their 

terminals to facilitate self excitation [4,5]. Equipped with 

optimum excitation capacitances, SEIG generates voltage 

across its terminals as soon as it is supplied required kinetic 

energy from the rotor side [6,7]. In turn, the rotor gets 

mechanical energy from a suitable. prime mover such as a 

wind or mini/micro hydro turbine. SEIGs have inherently 

poor voltage regulation. Thus, in order to make them 

practically viable, SEIGs have to be able to self regulate 

their terminal load voltage. While various schemes may be 

considered in this regard [8]-[14], the one selected for the 

implementation should adhere to over all spirit of the SEIG 

system and must not adversely affect the ruggedness of the 

system. In this paper detailed d-q modeling, simulink 

implementation and performance analysis of a short shunt 

SEIG [4,12,15] is presented. 
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II. MODELING OF SEIG 

 

The d-q model of a three phase short shunt SEIG is 

depicted in Fig. 1[15,16]. The mathematical model of an 

induction machine in generation mode can be represented by 

(1) [15,16]. 

 
Fig. 1 d-q model of a three phase SEIG 

 (1) 

In (2) to (4) some of the variables represent machine 

parameters and may be calculated from the standard tests 

available for the same [17]. However, besides the 

standard machine parameters the magnetizing inductance 

Lm (which is dynamic for generator operation) and the 

stator and rotor induced voltages have to be found for the 

solution.  
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Here,  idcap=isd  and iqcap=isq 

Modeling of Series Capacitance 
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Modeling of Load 
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Now, idcap=isd -iLd and iqcap=isq-iLq, thus: 
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III. RESULTS AND DISCUSSION 

 

The experimental set-up details and the equipment 

parameters are given in Appendix. In this section no-load 

and load performance of machine is assessed.  

 

A. Selection of Optimum Capacitances and Extraction 

of Magnetizing Characteristic 

The optimum excitation (shunt) and the compensation 

(series) capacitances have been evaluated experimentally 

on the studied machine as 15 µF (per phase) and 40 µF 

respectively as they gave best voltage regulation at full 

load of unity pf. The magnetizing characteristic is 

evaluated through synchronous speed test [15]-[18] of the 

studied SEIG. The extracted magnetizing characteristic is 

given as: 

 

Lm        e
     ph

        e     ph
             ph 

         
     (12)       

B. Effect of Speed Variation on No-load Voltage  

 The effect of speed variation on various SEIG parameters 

is assessed through the simulation results depicted in Fig. 

3. For a marginal decrease in speed from 1500 rpm to 
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1422 rpm the generated no-load voltage drops to 135 V 

from the rated no load value of 230 V. This implies that 

for a drop in speed by about 5% of the rated value the 

generated no-load voltage drops by more than 58%. Also, 

it is seen that below 1420 rpm the SEIG loses excitation 

completely causing the voltage collapse. Alternately, 

when the speed is increased by 8% the generated voltage 

increases by 15 % to 265 V. Therefore, the change in 

generated voltage is sharper when the speed is decreased 

as against when it is increased. The variation in SEIG 

stator current attains the similar dynamics as the voltage.  

 

       

 

 

 

 
Fig. 2. variation of SEIG parameters with speed. 

C. SEIG Performance with 0.9 Lagging pf Loading 

Retaining the same set of optimum capacitances the rated 

load of 0.9 lagging power factor is switched to the SEIG 

terminals with RL    Ω and LL     mH  The simulated 

loading transients and the waveforms of load voltage and 

currents are depicted in Fig. 3 and Fig. 4 respectively. Here, 

it is seen that the SEIG operating in short shunt connection 

is able to supply the connected load successfully. The full 

load voltage is about 375 V (265 V, rms) and the load 

current attains a value of 4.67A (3.3 A, rms). 

 
Fig. 3. Loading transients for voltage and current at full 

load of 0.9 lagging pf. 
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Fig. 4. Zoomed view of load voltages at 0.9 lagging PF (a) 

phase a voltage and current (b) all three phase load 

voltages. 

The experimental results for the resistive–reactive (RL) 

loading considered for the simulation above are depicted in 

Fig. 5. It may be seen that load currents and voltages 

converge within ±5% with the simulated results. Moreover, 

the three phase load voltages and currents are observed to be 

quite balanced as is evident from Fig. 5 (c). The measured 

active, reactive and the active powers may also be seen in 

Fig. 5(d).      

 
 

 
 

 

 
 

 
 

Fig. 5. Measured output parameters of SEIG at rated 

load of 0.9 lagging power factor (a) three phase terminal 

load voltages (b) three phase load currents (c) phasors of 

load voltage and currents (d) active, reactive and apparent 

powers and operational power factor. 

 

IV. CONCLUSION 

 

Mathematical modeling of a three-phase, self voltage 

regulating short shunt SEIG in stationary d-q reference 

frame is successfully demonstrated in this paper. The 

developed model is implemented in terms of a simulink 

model to carry out its no-load and on load analysis. The no-

load results clearly show sensitivity of generated voltage to 

any transient change in driven speed. Subsequently, with the 

full load of 2.2 kW at 0.9 PF lagging being connected to the 

SEIG terminals, the SEIG is able to successfully withstand 

the loading and renders balanced output operation. The 

corresponding simulated and experimental results converge 

with 5% accuracy.       
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APPENDIX 

 
Fig. 6. Illustration of the 6Ph-SEIG test-rig. 

 

SEIG Parameters 

     ,   hp/   KW,     A, Rs     Ω, Rr’     Ω, 

Xls=Xlr      Ω open stator winding squirrel cage induction 

machine,  

Prime Mover Parameters 

3-phase, Delta connected, 415 V, 7.6 A, 3.7 KW, 1430 

rpm, 50 Hz, Squirrel cage type induction motor.   

 

Speed Controller 

YASKAWA VARISPEED Inverter Drive 616G5, 3 

phase, 400 V, 2.2 kW. 

 


