
ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 7, Issue 7, July 2021

 All Rights Reserved © 2021 IJEREEE 7

Development of VIP for AMBA AXI v4.0 Protocol

using UVM
[1] Venkatesh.T,

[2] Dr.Narendra C.P

[1][2]

Dept of Electronics & Comm Engineering,Bangalore Institute of Technology

Abstract-— System on Chip(SoCs) allows the integration of different Intellectual Properties(IPs) which makes

verification of IP very complex and time-consuming. In order to have proper communication between the IPs,

Advanced Microcontroller Bus Architecture(AMBA)-based Advanced eXtensible Interface(AXI) protocol is used as a

system bus that provides high bandwidth, low latency, and can able to operate at high frequencies. And comparing

with other AMBA protocols AXI provides better efficiency while utilizing the bus. Verification of complex SoCs does

take more time to verify. so, by developing a reusable Verification IP (VIP)that allows to reuse this verification

environment to verify other SoCs by means of this reusable VIP time taken to verify the SoCs will be greatly reduced.

The focus of this research is on creating a VIP for the AMBA AXI v4.0 protocol by utilizing the Universal Verification

Methodology (UVM). Here the Design Under Test(DUT) was developed using Verilog and SystemVerilog and the

testbench environment has been developed using SystemVerilog verification language and UVM Methodology. And

all five independent channels supported by the AXI protocol have been verified. Simulation results and Verification of

channels along with functional coverage have been carried out using Mentor Graphics Questa Sim tool

Index Terms - AMBA,AXI,SoC,VIP,UVM.

I. INTRODUCTION

The Because of the AMBA protocol's flexibility, it may

be used in a variety of SoC architectures with different

size, power, and performance requirements[4]. AMBA

protocols are widely used open standards, ensuring

compatibility across IPs from different providers for

SoCs. Because of this interoperability, low-friction

integration and IP reuse are possible, resulting in a faster

time to market. Fig.1 shows the evolution of different

AMBA protocols.

Fig.1 Evolution of AMBA Protocols

For validating designs, the so-called traditional

verification method of developing test benches in Verilog

or VHSIC Hardware Description Language (VHDL) and

driving stimulus to the design is inefficient.

As design complexity has increased, these techniques

have become burdensome and insufficient to validate the

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 7, Issue 7, July 2021

 All Rights Reserved © 2019 IJEREEE 8

IP. System Verilog's advanced features aid in the creation

of a possible verification environment.

SystemVerilog's[3] goals are to reduce the cost of

verification tool adoption and ownership, as well as to

create a larger market through industry-wide support[5].

By becoming an industry standard, SystemVerilog will

achieve these goals. To reduce verification effort and

increase verification efficiency, a systematic strategy is

required. In this study, we apply UVM[6], an SV-based

methodology approach that aids in the development of

reusable, reliable, and robust verification environments.

The UVM approach is used to create VIP for AXI.

The remaining sections mainly focus on, Section II

discusses different AXI channels, along with interface

signals of each channel.Section III discuss on

development of Verification IP by developing a

SystemVerilog-based Universal Verification

Methodology(UVM) testbench environment. And

Simulation and Verification results along with the

coverage report are shown in section IV.

METHODOLOGY

Architecture of AXI Protocol

This project aims to have communication between the

single master and single slave using AXI Interface. And it

has been designed using Verilog and SystemVerilog and

verified using UVM methodology

Fig.2 Write Channels of AXI

Fig.3 Read Channels of AXI

The AXI design establishes five unique channels and

introduces the concept of ID to allow many transactions

to occur at the same time. Fig.2 and 3 shows the write and

read channel architectures, respectively.

Fig.4 Write Channel handshake

Fig.5 Read Channel handshake

1. Address Write Channel (AW): The channel transfers

address and associated control signal information for a

write transaction.

2. Write Data Channel(W): The channel carries data and

bus with a data bus width of 8 or, 16 or, 32 or, 64 or, 128

or, 256 or, 512 or, 1024.

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 7, Issue 7, July 2021

 All Rights Reserved © 2019 IJEREEE 9

3. Address Read Channel(AR): The channel transfers

address and associated control signal information for the

read transaction.

4. Read Data Channel(R): The channel carries data and

the read response from the slave to master and the data

bus width can be8 or, 16 or, 32 or, 64 or, 128 or, 256 or,

512 or, 1024 wide.

5. Write Response Channel(B): This channel ensures by a

slave to reply to write transaction by a master to indicate

the transfer completion. It is a 2-bit signal.

2'b00 is an OKAY response, which means the success of

a normal transaction.

2'b01 is EXOKAY response, indicates it is a failure to

normal transaction and success for an exclusive

transaction.

2'b10 is SLEVERR response indicates when master trying

to access FIFO/buffer in overflow or an underflow

condition. If any request comes with an unsupported

transfer size. Trying to write into a readonly location.

2'b11 is DECERR response, returns when interconnect is

unable to decode the slave access.

The write transaction dependencies are depicted in Fig.4

and the read transaction requirements are depicted in

Fig.5

Interface signals of AXI Protocol

Table 1:Write Address Channel Signals

Table 2:Write Data Channel Signals

Table 3:Write Response Channel Signals

Table 4:Read Data Channel Signals

Table 5:Read Address Channel Signals

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 7, Issue 7, July 2021

 All Rights Reserved © 2019 IJEREEE 10

Write Strobe Signal

The WSTRB signal can be used by a manager to indicate

to a subordinate which bytes of data are significant. For

efficient mobility, WSTRB are beneficial for caching

sparse data arrays.

The write channel on the data bus has one strobe bit per

byte. These bits make up the WSTRB signal. According

to the manager, the write strobes for valid data must be set

to high.

Take into consideration the 64-bit write data bus. In the

WSTRB signal, each byte is represented by one bit.

WSTRB values decide which byte lanes are valid, as

indicated in the diagram below

Fig.6 Example for WSTRB signal

Burst Type

 AxBURST[1:0] specifies the transaction's burst type:

fixed, incrementing, or wrap.

Table 6: Burst type encoding

Burst Type Value Defination Length of

transfers

Unaligned Support

FIXED 2’b00 Write and Read repeaditely to the

same address

1 to 16 No

INCR 2’b01 Incrementing type:

From the previous transaction

address, Subordinate will

increments the address for each

specific beat in the transfer.

It depends on the value of AxSIZE.

AXI4: 1-256

AXI3: 1-16

YES

WRAP 2’b10 Wrap type burst:

The address will be incremented till

it hits the upper or end border of the

transaction from the starting

address. once it reaches end address.

2, or 4, or 8, or

16

No.

Always issues

aligned address to the

transfer size.

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 7, Issue 7, July 2021

 All Rights Reserved © 2019 IJEREEE 11

it get back to the transaction's initial

address.

RESERVED 2’b11 - - -

QoS Signalling

AXI4 added two 4 bit QoS signal each for read and write:

AxQOS represents either AWQOS for write or ARQOS

for read.

AXI4 helps to priortize the transactions based on the QoS

value provided by the manager/master. The transaction

with the high QoS value has higher priortization

compared with the low QoS value.

Fig.7, shows an example for QoS signaling. Where the

components such as CPU requires higher access to the

memory compared to the other components. So, by

assigning suitable QoS values to each transaction.

Interconnect will arbitrate the transactions with higher

QoS values first compare to the transactions with lower

QoS values.

Direct Memory Controller(DMC) is used to inverse the

transactions inorder to ensure that higher QoS values

given more importance.

Fig.7 Example for QoS signaling

TESTBENCH ARCHITECTURE

Fig.8 UVM Architecture

UVM Test:

First step is to set up the testbench

Begin the process of creating testbench components by

creating the next level down in the hierarchy, for

example, env.

Start the process to initiate the stimuli.

UVM Environment: The environment, sometimes known

as env. It is a container module that contains agents and

scoreboard.

UVM Agent:

A user-defined agent is derived from uvm agent, and uvm

component inherits uvm agent.

A driver, a sequencer, and a monitor are common

components of an agent.

Agents can be set to be active or passive.

UVM Driver: This component is responsible of

converting base data from sequence-item to internal data

(to Design Under Test).

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 7, Issue 7, July 2021

 All Rights Reserved © 2019 IJEREEE 12

UVM-Sequence: It is used to develop a series of random

items. That will be passed to the driver through

sequencer.

UVM-Sequencer: The sequencer is in charge of directing

the data packets between the driver and sequences.

UVM-Monitor: Monitors signal activity via the design

interface and convert it to transaction-level data for

delivery to the scoreboard.

UVM Scoreboard: Used to compare the reference model

data with the orginal data(DUT).

SIMULATION RESULT

All the five channel waveforms of AXI Protocol is shown

in this section by using Questa sim tool. To conduct the

simulation analysis, the different modules of the AXI

Slave are first modelled in Verilog and SystemVerilog

and then combined with the modelled test environment

for verification, which serves as the master. The Design

Under Verification (DUV) environment is developed by

developing verification components such as

transgenerator, driver, and reference model etc..

Read Phase Verification

The read phase contains two types of channels one is the

address read channel and another is the read data channel.

Initially master or manager sends the request to the slave

or subordinate using the address read channel by asserting

the read address signal along with the associative

interface signal which are present in that channel. Address

Read READY signal is asserted by the slave to indicate

that slave is ready for the following transaction. Once the

request is initiated by the master at the positive edge of

the clock, data can be read using the read data channel by

asserting Read Valid and Read Ready signals for each

transfer in a transaction. And the response signal is used

to acknowledge that the transfer is completed

successfully. Fig.9 shows the simulation result and fig.10

shows the verification results of the read phase where the

actual data which is coming from DUT is compared with

the expected result.

Fig.9 Read Channels with Muiltiple Outstanding

Requests

Fig.9 displays the waveforms of read channels with

Multiple Outstanding Requests and Out of Order

transaction completion with respect to the values of

Quality of Service (QoS) passed by the master.

Fig.10 Verification output for Read data

Fig.11Transcript Result for Read data

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 7, Issue 7, July 2021

 All Rights Reserved © 2019 IJEREEE 13

Write Phase Verification

 Fig.12 shows the simulation result of the two diferent

Write channels. Here AWSIZE refers to the size of each

transaction the address write channel will fetch the

address at every high state value of AWVALID and

AWREADY. Now AWID is an address write ID that

represents an individual tag for each write address and it

should match with the write data-id(WID). Then as per

the request given by the master, WDATA and WSTRB

signals are driven respectively and accordingly. When the

last data of each burst has been driven, WLAST in the

write data channel is driven high for one clock cycle. This

implies it is the end of the burst and at the positive edge

of the clock when WVALID and WREADY, get logic

high state, the write data channel acknowledgment will

take place.

Fig.12 Write Channels with Muiltiple Outstanding

Requests

Fig.13 Response Bufferablity

AXI has a buffering feature that permits responses to be

sent by intermediate components rather than waiting for a

response from the end slave, which may cause the arbiter

number of cycles to reach master to be delayed. Fig.13

shows the simulation result for response with buffering

concept.

Fig.14 QoS Priortization

AXI4 helps to priortize the transactions based on the QoS

value provided by the manager/master. The transaction

with the high QoS value has higher priortization

compared with the low QoS value. Fig.14 shows the

simulation result with different QoS values for each

transaction.

Fig.15 Wrap Address

Fig.15 shows the simulation result for address increament

in case of wrap burst type.

Fig.16 INCR Address

Fig.16 shows the simulation result for address increament

in case of INCR burst type.

Fig.17 Fixed Address

Fig.17 shows the simulation result for address increament

in case of FIXED burst type.

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 7, Issue 7, July 2021

 All Rights Reserved © 2019 IJEREEE 14

Fig.18 Unaligned Address transaction

Fig.19 Unaligned Address increament

AXI-3 and AXI-4 supports Unaligned address for INCR

type of burst. Fig.18 shows the simulation result for INCR

burst type with unaligned address. Fig.19 shows the

simulation result of how the data and address will be

driven for each transfer.

Fig.20 shows the verification output for write data. Where

the expected data coming from reference model is

compared with the actual DUT output using scoreboard.

Fig.20 Verification output for Write data

Fig.21 Coverage Report

Fig.21 shows the functional coverage report. Where

94.4% of coverage has been achived for the given DUT.

Fig.22 UVM Report Summary

Fig.22 shows the UVM report summary with verbosity

level for the above AXI protocol.

CONCLUSION

Verification of complex designs or SoCs with Verilog or

VHDL does take a lot of time to verify. So, there is a need

to develop a standard verification environment that

provides reusability to verify other standard IPs and

consumes less time to verify the DUT. Most of the SoCs

uses AXI as a common bus for on-chip communication.

This research work is carried out by designing AXI Slave

using Verilog and SystemVerilog and by developing

Verification IP(VIP) for AXI protocol in order to verify

all types of transactions with respect to writes and reads

for all types of burst supported by AXI using UVM. This

project also verifies some of the features of AXI which

ISSN (Online) 2395-2717

International Journal of Engineering Research in Electrical and Electronic

Engineering (IJEREEE)

Vol 7, Issue 7, July 2021

 All Rights Reserved © 2019 IJEREEE 15

include QoS prioritization, Bufferablity with respect to

the response provided by Slave, and Unaligned address

transactions for INCR type of burst. 94.4 % of functional

coverage was achieved by this project. And all the

components in the verification environment are developed

using UVM which helps to reduce verification time.

REFERENCES

[1] AXI, ”AMBA™ Specification(Rev 5.0)”.

[2] Gayathri M, Rini Sebastian, Silpa Rose Mary, Anoop

Thomas,” A SVUVM framework for Verification of

SGMII IP Core with reusable AXI to WB Bridge

UVC”, 3rd International Conference on Advanced

Computing and Communication Systems (ICACCS),

Jan. 22 , 2016

[3] Nishit Gupta, Sunil Alag,” NTRP: Novel Approach

for DUT Testing based on Nonintrusive Timing

Randomization Probes using SystemC Verification

Library”, International Conference on Information

Technology(InCiTe)-The Next Generation IT

Summit,2016

[4] AXI, ”AMBA CHI Specification”.

[5] AXI, ”AMBA AXI™ Specification(Rev 5.0)”.

[6] “Mentor Graphics UVM Cookbook”

[7] lasencia-Balabarca, Edward Mitacc-Meza, Mario

Raffo-Jara and Carlos SilvaCárdenas,” A Flexible

UVM-Based Verification Framework Reusable with

Avalon, AHB, AXI and Wishbone Bus Interfaces for

an AES Encryption Module”, International Journal of

VLSI design & Communication Systems (VLSICS)

Vol.3, No.2. 2012.

