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Abstract— This study, it is aimed to use an effective approximation method, called Optimal Homotopy Asymptotic Method (OHAM) 

for elastic stress analysis. This study is carried out with the idea that utilizable of the considered method in many areas and having 

advantages will add a new perspective to the rotating disc problems that can provide convenience and practicality. The considered disk is 

an annular disk with both free ends and is subjected to centrifugal force. The thickness variation is assumed as hyperbolic. Deformations 

occurred on the disk, and radial and tangential stresses are calculated with the proposed method. The approximate solutions are in very 

good agreement with the exact solution. It is observed that the results converge to exact solutions faster than other approximate methods, 

like the Improved Adomian Decomposition method, in the literature. The results of this study show that OHAM is a very practical method 

with fast results for rotating disk problems.  The study also shows the advantages of OHAM being directly applicable to differential 

equations of rotating disks without any transform function. Results by the comparison of approximate results and exact solutions 

indicated that OHAM can effectively be used in the analysis of rotating variable thickness disks. 

 

Index Terms—angular limit velocity, elastic analysis, rotating disk, OHAM. 

 

I. INTRODUCTION 

Rotating disks have a wide area of utilization in 

engineering applications. Due to its wide usage, it is essential 

to understand its behavior under different conditions. 

Especially, the damage that can occur on rotating disks with 

high speed can cause vital problems. This risk necessitates 

studies on this subject particularly. Studies on different 

conditions and geometries are of particular importance in 

determining the optimum disk profile while still in the design 

phase, as it allows instant interpretation of the structural 

behavior of disk profiles. Rotating disk problems can be 

described with differential equations like many other 

physical phenomena.  

 Scientific literature involves different methods to solve 

rotating disk problems, but researchers still pay great 

attention to the subject. Although some problems can be 

solved easily with classical methods ın some conditions, 

some complex problems caused by material properties, 

boundary conditions, or geometry can not be solved with 

known classical methods. The development of numerical 

methods and analytical approach methods emerged from the 

need to solve these problems. Perturbation techniques [1] and 

numerical solutions [2] were produced for solid disks. Also, 

some analytical approximation techniques was studied for 

elastic-plastic analysis [3],[4]. [5] and [6] used the 

Runge-Kutta algorithm for the  numerical solution while 

using hyper-geometric and Kummer functions in their 

analytical solution studies of the variable-thickness hollow 

rotating disk problem. [7] developed a numerical 

computational model for elastic and partially plastic stress 

states in rotating solid discs of variable thickness, and they 

used a shooting technique using Newton iterations to solve 

the model. The method is based on solving the boundary 

value problem by transforming it into an initial value 

problem. [8] used an approximate method called variable 

material properties (VMP) to solve the situations that do not 

have exact solutions in variable thickness rotating discs. [9] 

used Homotopy Analysis Method (HAM), Adomian 

Decomposition Method (ADM) and Variational Iteration 

Method (VIM) under different boundary conditions to 

provide semi-analytical solutions to the elastic analysis of 

hollow, functionally graded discs with varying thickness 

from the center to the ends. [10] and [11] presented a finite 

element method for elastic-plastic stress solution for a 

functionally graded rotating disk problem and used 

Runge-Kutta iteration method as a numerical solution for 

elasto-plastic stress analysis of rotating disks and pressure 

vessels made of functionally graded materials. [12] evaluated 

the elastic deformation analysis of a functionally graded 

rotating disc using the finite difference method.  [13] used the 

finite element method for the analysis of two-dimensional 

functionally graded rotating circular and solid discs. [14] 

presented semi-analytical solutions for stress analysis of 

functionally graded rotating annular disks with arbitrary 

thickness variations. [15] presented a solution with 

complementary functions, aiming to reach the solution 

directly without requiring any acceptance in functionally 

graded disks. Complementary functions method is one of the 

effective methods used in the direct solution of differential 

equations by reducing the boundary value problem to the 

initial value problem. In [15], the differential equation set 

was solved using the Runge Kutta 4/5 method using the real 

boundary conditions of the problem. [16] proposed Improved 

Adomian Decomposition Method (IADM) for elastic 

analysis of variable thickness rotating disks. Researchers' 
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interest in the development of analytical approach methods is 

always in search of "better" solutions. 

In this study, the variable thickness rotating disk problem  

is solved with a very effective approximation method 

OHAM. OHAM was produced on the basis of Homotopi 

Analysis Method [17]. HAM, developed in [18] using the 

idea of homotopy in topology, later became a method used by 

many authors in solving various equations. HAM gave the 

authors an advantage in that it does not depend on small or 

large parameters, unlike perturbation methods. OHAM quite 

resembles HAM but more flexible. It provides an opportunity 

to control and adjustment of the convergence region and rate 

of convergence with an auxiliary parameter. This method is 

approached for variety flow problems, heat transfer problem, 

vibration problem, and many other equation types to prove 

and control its effectiveness [19]-[23]. 

This study is carried out with the idea that the utilizable of 

OHAM in many areas and having advantages will add a new 

practical and time-saving solution to the rotating disc 

problems. 

II. VARIABLE THICKNESS ROTATING DISK 

An annular rotating disk is shown in Fig. 1 The 

government equation of variable thickness rotating disk is 

based on (1). 

2 2( ) 0r

d
tr t t r

dr
    

                           (1) 

where t is the variable thickness, σr is the radial stress, σθ  is 

the tangential stress, ρ is the density of disk material, ν is 

Poisson’ ratio and ω is the constant angular speed of disk. 

 

Fig. 1 Variable thickness annular disk profile 

Because of the disk thickness is variable, t is a function of r 

as shown in (2). 

1

st t r 
                                            (2) 

t1 is the constant thickness of disk at inner radius and s 

represents the geometry parameter of disk.  

For elastic analysis, strain-displacement, stress-strain 

relations are given in (3).  
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Elastic strains should satisfy the compatibility relation 

given in (4). 

  0r

d
r

dr
  

   (4) 

Defining a stress function as (5) lead to read tangential and 

radial stress in terms of Φ.  

  rr tr 
 (5) 

The radial and tangential stresses read as (6) and (7), 

respectively. Therefore, the strains are also rearranged 

according to Φ. 

r
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The governing equation is obtained in dimensionless form 

by using the non-dimensional variables as presented in (8). 
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where σ0 represent the yielding limit, Ԑ stands for the 

strains and E is the modulus of elasticity. 

Substituting stress-strain relations in compatibility 

equation in terms of dimensionless variables produces (9) for 

the considered problem in this study. 
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 (9) 

This equation is solved according to annular disk boundary 

conditions as σr(rin)=0 and σr(rout)=0. 

III. SOLUTION PROCEDURE OF OPTIMAL 

HOMOTOPI ASYMPTOTIC METHOD 

The first step before applying the OHAM, the considered 

differantial equation is written in the form of (10). 

( ( )) ( ) ( ( )) 0,      ( , ) 0
du

L u x g x N u x B u
dx

   
  (10) 

where L is a linear and N is a nonlinear operator, L(u(x)) 

and N(u(x)) are linear and nonlinear part of the equation. x 

denotes independent variable, u(x) is taken as an unknown 

function, g(x) is considered as a known function and B is a 

boundary operator. Having the freedom to choose the linear 

part is one of the most advantageous sides of the considered 

method. 
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The second step is to construct a family of equation in 

accordance with the OHAM as in (11). 

(1 )[ ( ( ; )) ( )]

          ( , )[ ( ( ; )) ( ) ( ( ; ))]   

p L x p g x

H x p L x p g x N x p



 

  

 
     (11) 

p is embedding parameter that varies from 0 to 1. H(x,p) is 

an auxiliary function that is nonzero for p≠0 and it is equal to 

zero for p=0. 
( ; )x p

is unknown function that its solution 

varies from 0( )u x
 to 

( )u x
 while p varies from 0 to 1, 

respectively. 

0( )u x
is the zeroth order problem, obtained from the 

constructed homotopy equation in (11) for p=0. The auxiliary 

function H(x,p) involves arbitrary constants showed cn. 

( ; )x p
 can be expanded in Taylor’s series about p to get 

an approximate solution, as (12). 
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Substituting the value of 
( ; )x p

 into (11) the solutions for 

each approximation steps can be obtained as shown in (13). 
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The convergence of the series 
( ; )x p

depends upon the 

auxiliary constats cn. If it is convergent at p=1, the solution is 

obtained as (14). 

0
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k
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
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        (14) 

By substituting (14)  into (10), it results the residual 

function in (15). 

( , ) ( ( , )) ( ) ( ( , )),      i=1,2,3..i i iR x c L u x c g x N u x c  
 (15) 

If 
( , ) 0iR x c 

, then the solution is going to be exact. To 

determine the auxiliary constants the least square method can 

be used, 

2( , ) ( , ) ,

b

i i

a

J x c R x c dx 
  (16) 

where a and b are constant values depending on the 

considered problem. According to the least square method, 

for the optimization of equation (16), the unknown constants 

cn’s can be identified. 
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OHAM requires solving a series of nonlinear algebraic 

equations for unknown convergence control parameters cn. 

IV. NUMERICAL RESULTS  

An annular rotating disk having hyperbolic profile that 

inner radius is 0.05m and the outer radius is 0.25 m is 

considered. The material properties are taken as 200 Gpa of 

elasticity modulus and 0.3 of Poisson’s ratio. In fact, the 

solutions are expressed nondimensional form by taking ρω2 

as unity and all equations as non-dimensional. 

By taking consideration (10), linear and nonlinear 

operators are choosen as (18). 
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Approximation solutions are calculated according to (13). 

Zeroth order and first order approximate equations are 

shown in (19) openly. 
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Numerical results for s=1 with different order of 

approximate solutions obtained using OHAM are compared 

with exact solutions in following figures. 

 
Fig 2. Comparison of radial stress results 

Radial stress diagrams in Fig. 2 show that the results 

obtained with OHAM are getting closer to exact results when 

the order of approximation increases. An overlapping graph 

is obtained with the exact solution graph for the third order 

approximation solution without any deviations. 
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Fig 3. Comparison of tangential stress results 

When the tangential graphs in Fig. 3 are taking into 

consideration, it is seen the third approximation result is in 

very good agreement with exact solution. 

 

Fig 4. Comparison of radial displacement results 

The radial displacement results seen in Fig. 4 are 

satisfactory enough, like radial and tangential stresses. 

Although the first two results do not behave the exact 

solution, the third approximation is in excellent agreement 

with exact. 

V. CONCLUSION 

Elastic stress and displacement analysis for rotating 

hyperbolic disks with constant angular velocity using OHAM 

is conducted in this work. This paper reveals that OHAM is a 

very strong method for solving variable thickness rotating 

annular disk problems and gives us a satisfactory precision 

solution as compared to other approximatin methods that 

avaliable in literature. In this study, third order solution was 

obtained by calculating c1, c2, and c3. The presence of cn 

control parameters in OHAM simply controls and adjusts the 

convergence of the serial solution.  Also, the OHAM can be 

applied to governing differential equation without any 

transform function. This method is quite simple in 

applicability, as it does not require discretization like 

numerical methods.  OHAM has been developed to guarantee 

precision at all times. Flexibility in the auxiliary function 

facilitates this.  Due to being suitable for leading equation of 

rotating disks, proposed method can be successfully used in 

the analysis of rotating variable thickness disks. The 

development of rotating disk equipment is possible by 

mathematically modeling and solving how it will behave 

under the conditions it will be exposed to. Most of the 

methods proposed in the literature for the solution of such 

problems refer to some assumptions or transformations in the 

mathematical model of the physical problem. The proposed 

method for the solution of rotating discs within the scope of 

this study can be applied directly without requiring any 

assumptions or linearization, thus allowing the closest 

solutions to the real behavior to be obtained. This study also 

shows that it is possible to offer solutions to disk problems in 

the closest and broadest framework with fewer steps. This 

study also contribute to the usage of the advanced 

mathematics applications in engineering fields. 
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