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Abstract— Construction robots are receiving more and more attention as a promising solution to the emerging shortcomings of the 

conventional construction industry. The development of intelligent control techniques for obstacle avoidance is crucial for guaranteeing 

the adaptability and flexibility of mobile construction robots in complex construction environments. Most of the existing obstacle 

avoidance algorithms are based on processing high-precision point cloud data collected by laser sensors to ensure operation fluency. 

However, because of the limitations of the laser sensors, those algorithms are invalid when detecting transparent obstacles that 

frequently appear in building environments. Therefore, this study aims to introduce a vision-based process for mobile construction 

robots to avoid transparent obstacles. To do so, a monocular camera is mounted on the testing robot platform, Turtlebot3 Burger, to 

collect visual inputs. A convolutional neural network is trained to compute the received videos and recognize transparent obstacles. The 

vision programs are coded in the Robot Operating System (ROS) to control the robot’s motions. On-site validations are conducted to 

prove the efficiency of the vision-based obstacle avoidance process. Different from avoiding obstacles using lidar inputs, the vision-based 

strategy successfully controlled the robot to avoid transparent obstacles. The findings contribute to paving a novel method for robotic 

obstacle avoidance by combining visual signals and deep learning, which is more efficient for avoiding collisions with transparent 

obstacles. 

 

Index Terms—Construction robot, Obstacle avoidance, Computer vision, Transparent obstacle. 

 

I. INTRODUCTION 

By automatically imitating, assisting, or even replacing 

various manual construction behaviors, construction robotics 

is deemed a promising way to realize a fully automated 

construction process and thoroughly alleviate the 

shortcomings of conventional construction, such as labor 

shortage. According to ResearchAndMarket.com [1], the 

global construction robotics market is expected to grow at a 

compound annual growth rate (CAGR) of 12.7% from 2020 

to 2025, indicating the increasing adoption of these robots in 

the construction industry. Therefore, a number of 

construction robotics have been developed, and some of them 

have begun to be adopted on-site. For instance, mobile 

robotic platforms were developed for on-site logistic 

purposes, such as moving packages around indoors [2-3]. 

The wheeled mobile robot is designed for the automated 

quality inspection of pipelines [4], concrete bridges [5], or 

pavement [6].  

Obstacle avoidance can be regarded as one of the most 

significant challenges for controlling mobile robots, which 

realize autonomous movements in dynamic environments by 

ensuring safe and effective navigation without colliding with 

obstacles [7]. Without the ability to avoid obstacles, a robot 

risks becoming stuck, facing damage, or even causing harm 

to its surroundings [8]. Therefore, it is essential to equip 

construction robots with intelligent obstacle avoidance 

algorithms to ensure smooth travel in complex construction 

environments. 

To avoid obstacles, the robots first perceive the obstacles’ 

location, size, and shape in an environment using attached 

sensors, such as lidar and ultrasonic sensors. After obtaining 

the sensor inputs, path planning algorithms, such as fuzzy 

logic, compute the input data and generate a navigation path 

for the robot to avoid obstacles. By emitting laser beams and 

measuring the time it takes to bounce back off objects in the 

environment, the lidar sensor provides highly accurate 3D 

maps of the environment, which can be utilized to detect and 

avoid obstacles in real time, making it the most popular and 

commonly used sensor for robot obstacle avoidance [9-12]. 

However, because the laser pulses cannot be reflected back 

effectively, lidar cannot be used to detect transparent 

obstacles [13], such as glass curtain walls. Therefore, this 

study aims to introduce a transparent obstacle avoidance 

method for construction robots based on visual information 

processing, which conveys messages more efficiently, 

directly, and flexibly. 

II. LITERATURE REVIEW 

A. Transparent obstacle avoidance using range sensors 

Obstacle avoidance in robotics is the process of achieving 

a control goal while adhering to non-intersection or 
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non-collision position constraints based on sensorial 

information [14]. Because lidar provides a larger 

measurement range and accurate and consistent sensing, it 

has been employed most widely to detect obstacles compared 

with other sensory systems, such as infrared sensors [15-17]. 

In lidar, the laser light is sent from a transmitter and reflected 

from the obstacle objects. Using the time of flight (ToF), the 

receiver determines and detects the distance between the 

transmitter and reflector. However, because light cannot be 

reflected from transparent obstacles, refraction, and 

penetration occur (as shown in Fig. 1(a)), which results in 

inaccurate detection. The ultrasonic sensor can detect 

transparent obstacles differently because it measures the 

propagation time of sound between sender and receiver 

instead of recording ToF (as shown in Fig. 1(b)). As such, 

ultrasonic sensors gained preference to improve the 

flexibility of avoiding transparent obstacles in building 

environments, such as glass doors [18], glass walls [19], and 

windows [20]. However, the poor range accuracy of 

ultrasonic sensors is also a significant concern [21].  

Transmitter

Reciever

Glass

Light

 
(a) 

Transmitter

Reciever

Original  signal

Reflected signal

Object

 
(b) 

Fig. 1 Working principle of lidar and ultrasonic sensor 

B. Transparent obstacle avoidance using vision sensors 

In addition to range sensors, visual sensors, including 

monocular or binocular cameras, are also considered efficient 

alternatives to detect obstacles. Instead of measuring 

distances based on light or sound waves, vision sensors detect 

obstacles by capturing images or videos of a scene, which 

provides rich and detailed information about the obstacles, 

such as shape, size, and color. Meanwhile, because vision 

sensors are insensitive to environmental changes and provide 

stable information, they are highly recommended to avoid 

particular obstacles, such as transparent obstacles [22-24] 

and underwater obstacles [25]. 

For the recognition, classification, or localization of 

objects, various computer vision algorithms are developed to 

process the received visual signals. Generally, computer 

vision algorithms used for robot obstacle avoidance can be 

divided into two groups. The first group employs image 

processing-based algorithms [26–27] for enhancement, 

restoration, and compression to extract the obstacles from the 

background. Detailed information, such as obstacle locations, 

can be provided to guide the robot as it navigates over 

obstacles. However, transparent objects that have no obvious 

features are hard to segment using image processing 

methods. For example, it is difficult to distinguish glass 

information because objects with solid features, such as cups, 

are in the glass area. To improve accuracy and robustness, 

deep learning algorithms, such as convolutional neural 

networks (CNN) or recurrent neural networks (RNNs), are 

increasingly embraced [28], especially in building and 

construction environments, which are surrounded by 

transparent components [29-30]. Therefore, this study trained 

a CNN network to control the robot and recognize transparent 

obstacles. Considering the computation limits of CPU-driven 

robotic control boards, the lightweight CNN network is 

employed. 

III. METHODOLOGY  

A. Data collection 

To train the lightweight CNN model, a monocular camera 

is mounted on the front of the Turtlebot3 Burger to form 

training and testing datasets (as shown in Fig. 2).  

   

   
Fig. 2 Data collection scenario 

 



      ISSN (Online) 2456-1290 

International Journal of Engineering Research in Mechanical and Civil Engineering 

(IJERMCE) 

Vol 10, Issue 6, June 2023 

31 

Acrylic sheets were placed accordingly to simulate 

transparent obstacles in buildings, such as glass curtain walls. 

The robot is placed in front of the acrylic sheet within 30cm 

from different angles to record the scenarios with and without 

acrylic sheets. A safe distance of 30cm is set considering the 

length and width of the Turtelbot3 burger to leave a certain 

space for reaction. As a result, 2501 and 634 images with and 

without acrylic sheets (transparent obstacles) are collected 

and stored in the datasets. The 3135 images are randomly 

split with a ratio of 80/20 for the training and testing datasets, 

which contain 2508 and 627 images, respectively. Examples 

of the collected images are shown in Fig. 3. The collected 

images are resized to the shape of 224  224 to simplify CNN 

computation. The images with and without acrylic sheets are 

labeled 0 and 1, respectively, to enable the robot to classify 

the transparent obstacles and safe paths. 

 
Images with acrylic sheets 

 
Image without acrylic sheets 

Fig. 3 Example of collected datasets 

B. Data processing 

The MobileNet, a lightweight CNN model, is trained to 

enable the robot to classify transparent obstacles. To be 

specific, the training images are first transformed into a 

tensor matrix and input to the MobileNet model. The 

architecture of the MobileNet is shown in Table. 1. The 

backpropagation algorithm is employed to compute the 

weight and bias matrix. To obtain fast training, and avoid 

overfitting and underfitting problems, the learning rate of 

0.0001, and batch size of 32 are set after several fine-tunings. 

The outputs are the image classifications of “place with 

transparent obstacles” and “place without transparent 

obstacles.”  

The confusion matrix is used to examine the model’s 

performance. In the confusion matrix, TP means the number 

of images predicted as the regions with transparent obstacles, 

and it is also the transparent obstacle in reality. TN means the 

number of images that are predicted as regions without 

transparent obstacles, and it is also the non-transparent 

obstacle surface in reality. FP means the number of images 

predicted as a transparent obstacle, but the actual 

classification is not. FN means the images are predicted as a 

region without transparent obstacles, but the actual 

classification is the transparent obstacle. Therefore, all the 

correct predictions are shown in the diagonal of the confusion 

matrix. The bigger the values on the diagonal, the more 

accurate the prediction. The network evaluation index of 

accuracy, precision, error, recall, and F1-score are then 

computed using equation (1) to equation (4): 

 
Equation (1) 

 

Equation (2) 

 

Equation (3) 

 

Equation (4) 

The programming is conducted in the Kaggle platform to 

ensure computation efficiency, which is equipped with T42 

GPU. 

Table. 1 Architecture of MobileNet [31] 

Type/Stride Filter Shape Input Size 

Conv / s2 3  3  3  32 224  224  3 

Conv dw / s1 3  3  32 dw 112  112  32 

Conv / s1 1  1  32  64 112  112  32 

Conv dw / s2 3  3  64 dw 112  112  64 

Conv / s1 1  1  64  128 56  56  64 

Conv dw / s1 3  3  128 dw 56  56  128 

Conv / s1 1  1  128  128 56  56  128 

Conv dw / s2 3  3  128 dw 56  56  128 

Conv / s1 1  1  128  256 28  28  128 

Conv dw / s1 3  3  256 dw 28  28  256 

Conv / s1 1  1  256  256 28  28  256 

Conv dw / s2 3  3  256 dw 28  28  256 

Conv / s1 1  1  256  512 14  14  256 

5  Conv dw / s1, 

Conv / s1 

3  3  512 dw, 1 

 1  512  512 

14  14  512, 

14  14  512 

Conv dw / s2 3  3  512 dw 14  14  512 

Conv / s1 1  1  512  1024 7  7  512 

TP TN
Accuracy 100

TP TN FP FN

+
= ´

+ + +

TP
Pr ecision 100

TP FP
= ´

+

TP
Recall 100

TP FN
= ´

+

precision recall
F1 score  2 100

precision recall

´
- = ´ ´

+
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Type/Stride Filter Shape Input Size 

Conv dw / s2 3  3  1024 dw 7  7  1024 

Conv / s1 
1  1  1024  

1024 
7  7  1024 

Avg Pool / s1 Pool 7  7 7  7  1024 

FC / s1 1024  1000 1  1  1024 

Softmax / s1 Classifier 1  1  1000 

A single computer board, the Raspberry Pi 3b, is used to 

realize the expected motions of the robot. The robot operating 

system (ROS) is installed on the Raspberry Pi to program the 

CNN computation and motion commands. The messages of 

Image from the sensor_msgs package are employed to 

receive the images and video stream from the monocular 

camera. The CvBridge package in ROS is employed to 

convert ROS image messages to OpenCV format, which is 

required for the CNN computation. Details can be found in 

the sample code (as shown in Fig. 4). The Twist message 

from the geometry_msgs package is employed to control the 

robot’s movements by sending linear and angular velocity 

commands.  

To validate the performance of the vision-based 

transparent obstacle avoidance method, an obstacle 

avoidance experiment was also conducted. To accurately 

target the forehead obstacles, interval ranges of [150°~180°], 

[60°~120°], and [0°~30°] are split for the lidar to represent 

the ranges of left-front, front, and right-front, respectively. 

The LaserScan message from the sensor_msgs package is 

employed to receive the distance data from a 360° lidar. The 

above-mentioned programs are coded using the Python 

language on an Ubuntu 16.04 system. 

 
Fig. 4 Sample code for importing CvBridge 

C. Validation experiments 

The mobile robotic platform, Turtlebot3 Burger, is 

employed as the testing machine to implement the 

experiments. As depicted in Fig. 1, the Turtlebot3 Burger is 

assembled as a three-layer octagon-shaped platform with a 

size of 138mm178mm192mm. The robot’s maximum 

translational and rotational velocities reach 0.22m/s and 2.84 

rad/s, respectively. By sending linear and angular velocity 

commands to the DYNAMIXEL motors, which are attached 

to the right and left wheels, the velocities of the wheels can be 

controlled automatically to enable the basic behaviors of “go 

straight,” “turn left,” “turn right,” and “stop.” According to 

the principles of kinematic dynamics, the velocities of the 

right wheel ( rV
) and left wheel ( lV

) can be calculated using 

equation (5). 

2

2

2

2

r

l

V L
V

R

V L
V
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











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  

Equation (5) 

Here: the values of L  and R  are 160mm and 33mm, 

respectively, which refers to the distance between the left and 

right wheels and the radius. 

A typical L-shaped building layout design is referenced to 

establish the onsite validation experiment environment. As 

shown in Fig. 5, the experiment places cover both regions 

with and without transparent obstacles. Transparent acrylic 

sheets are placed straight and inclined on the traveling paths, 

respectively to thoroughly examine the obstacle avoidance 

performance.  

 
(a) Layout design 

 
(b) On-site environment 

Fig. 5 Validation experiment environment 

Acrylic sheet 
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Start

Scanning forehead obstacle

Is the distance < 0.3m?

Stop:

Reduce linear velocity to zero

Increase angular velocity to zero

End

Go straight:

Keep linear velocity to 0.3m/s

Increase angular velocity to zero

Yes No

 
Fig. 6 A simple movement flow 

As shown in Fig. 6, a simple movement logic is employed 

to test whether the robot can successfully detect 

forehead-transparent obstacles and avoid them. Specifically, 

when the monocular camera and the lidar detect the forehead 

transparent obstacles positioned less than 30cm away, the 

robot is expected to stop on the ground slowly to avoid 

obstacles by setting the linear velocity to zero and the angular 

velocity to zero. 

IV. RESULTS 

A. Network performance 

Fig. 7 shows the variation in loss and accuracy in both 

training and testing datasets. It can be seen that the loss and 

accuracy in the training dataset converged at a fast speed. The 

training loss decreased from 0.26 to 0.001 at the earlier 5th 

epoch and maintained the value below 0.001. Similarly, the 

training accuracy increased from 0.90 to 1.00 at the earlier 

6th epoch and stayed the same at 1.0. The change in loss and 

accuracy in the testing dataset is in accordance with the 

changes in the training dataset, which proves there is no 

overfitting or underfitting problem with the trained model. 

The testing loss decreased from 0.02 to 0.0001 at the 4th 

epoch, while the testing accuracy was maintained at 1.0 from 

the 2nd epoch.  

 
Fig. 7 Loss and accuracy in training and testing datasets 

Table. 2. Confusion matrix and evaluation index 

Dataset TP FN FP TN 

Training 2009 1 1 497 

Testing 490 1 1 135 

Dataset Accuracy Precision Recall F1-score 

Training 99% 99% 99% 99% 

Testing 99% 99% 99% 99% 

The confusion matrix and evaluation index are shown in 

Table. 2, which demonstrate the outstanding performance of 

the trained MobileNet model. First, the lightweight model 

shows high accuracy. The accuracy score reached 99% and 

99% in the training and testing datasets, respectively, 

outperforming most existing CNN models [32]. Meanwhile, 

the precision score reached 99% and 99% in the training and 

testing datasets, respectively, higher than most CNNs [33]. It 

can be indicated that the trained MobileNet is applicable in 

both regions with and without transparent obstacles.  

The high recall scores of 99% and 99% in the training and 

testing datasets are higher than the existing pre-trained 

models for transparent object detection. For example, the 

trained model in [34]. A high recall score indicates the 

accurate recognition of transparent obstacles. Specifically, 

nearly all the 2010 images with transparent obstacles in the 

training dataset are correctly recognized. In the testing 

dataset, nearly all the transparent obstacle images are 

correctly recognized. The high F1-scores of 99% and 99% in 

the training and testing datasets prove the high robustness of 

the trained MobileNet model. The F1-score is higher than 

most existing CNN models, including the CNN models for 

transparent object detection, with F1-scores of 91.56% [35].  

B. On-site validation 

To highlight the effectiveness of the vision-based 

transparent obstacle avoidance method, the experiment of 

lidar-based obstacle avoidance is first conducted as the 

comparison object. As shown in Fig. 8(a), because the light 

wave penetrates the transparent objects, the robot fails to 

detect the acrylic sheet when employing lidar to receive point 

cloud data. It is worth noting that lidar is still more accurate 

and faster than vision-based processing when detecting solid 

obstacles, as shown in Fig. 8(b). 
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(a) Collision with acrylic sheet 

 
(b) Avoiding a solid obstacle 

Fig. 8 Scenes of collision and avoiding obstacles using lidar 

Differently, the vision-based obstacle avoidance method 

successfully controlled the robot to avoid transparent 

obstacles by processing the input video stream with the 

MobileNet model. As shown in Fig. 9, the robot moves 

straight with a linear velocity of 0.3 m/s and an angular 

velocity of zero at first. The linear velocity turns to zero when 

the MobileNet outputs the object label as “0”, which controls 

the robot to stop on the ground to avoid forehead transparent 

obstacles. The method is effective no matter the robot’s 

forward angles because the training images are captured by 

placing the robot in front of the acrylic sheets at different 

angles.  

 

 
Fig. 8 Avoiding obstacles using the vision-based method 

V. CONCLUSION 

To achieve transparent obstacle avoidance for mobile 

construction robots, this research introduces a vision-based 

obstacle avoidance method to avoid collisions with 

transparent building obstacles. Specifically, a monocular 

camera is equipped to capture video streams and form 

training and testing datasets. The datasets are then input to a 

trained lightweight MobileNet model. The CNN programs 

are coded in the ROS platform to control robot’s movements. 

The CvBridge package in ROS is employed to converts ROS 

information to OpenCV format. Doing so, the robot 

recognizes the transparent obstacles avoid them by changing 

linear and angular velocities accordingly when the 

MobileNet outputs the video objects with the label 

“transparent obstacles.” This research contributes to 

introducing an effective and novel idea of transparent 

obstacle avoidance for mobile robots by combining visual 

signals and a deep learning approach. The performance of the 

introduced method is proved by conducting an on-site 

validation and comparing it with a lidar-based transparent 

obstacle avoidance experiment. 
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