

"Used of Galvanized Iron Sheet to Control Evaporation Losses in Farm Pond"

^[1] S. S. Sonawane, ^[2] R. V. Khiste, ^[3] O. M. Kulkarni, ^[4] S. P. Nirkhe, ^[5] R. S. Patil

^[1] PG student, Mechanical Engineering Department, Deogiri institute of engineering and management studies, Aurangabad

^[2] Assisant Professor, Mechanical Engineering Department, Deogiri institute of engineering and management studies, Aurangabad.

Abstract: -- One of the precious gifts of nature which sustain life on earth is water. Water has been used since antiquity as a symbol by which to express devotion and purity. As per Indian standard near about 1150 mm depth of water in a traditional farm pond is evaporated per year in India. To overcome of evaporation losses by the traditional method we used the modified method by using Galvanized Iron sheet near farm pond. For this work, we choose farm pond located at Pimplegaon in Jalna district. By using the modified method, we got a significant amount of water control in evaporation losses.

Keyword: Evaporation, Farm pond, GI sheets, Water.

I. INTRODUCTION

The evaporation is the process of liquid is converted into gases state is called as evaporation. Evaporation is the process by which water is converted form it's also known as water vapor. In other words, water leaves the earth's surface and enters the atmosphere as a gas. In fact, the United States geological survey (the USGS) says that up to 90% of the water vapor in the air comes from surface rivers, with the rest coming from plant. [1]

The National Commission on Agriculture (1976) had estimated that the annual evaporation losses from reservoir surfaces will be of the order of 50,000 MCM. Central Water Commission in their publication "Status Report on Evaporation Control in Reservoirs, 1988" had indicated that on an average there is a loss of about 450 MCM of water every month from an area of 2,000 Sq. km. Which amounts to an annual loss of 5,400 MCM? The Water Management Forum (WMF), a national body of the Institution of Engineers (India), in their publication "Water Conservation by Evaporation Control, 1988" had indicated that on the Indian sub-continent the estimate total loss of water from large, medium and small storages will be to the tune of 60,000 MCM, which according to WMF would be adequate to meet the entire municipal and rural water needs of India by 2000 AD. [3]

The assessment of evaporation losses had been reviewed by CWC in 1990. Average annual evaporation from

reservoirs/water bodies in India varies from 150 cm to 300 cm. The total surface area of existing large and medium storages, tanks and lakes in the country is of the order of 12,000 Sq. Km. This is likely to increase to about 25,000 Sq. Km. at the ultimate stage of development. Assuming annual evaporation loss rate of 225 cm, the evaporation loss from existing water bodies works out to 27,000 MCM. In the ultimate stage, the evaporation losses may be of the order of 56,000 MCM. Thus, likely evaporation losses appear to be high, considering capital costs involved in creation of storages. It may not, however, be possible to take remedial measures of evapo- retardation on all storages/water bodies. Assuming even 20% of the above area falls in scarcity and drought areas, it may be necessary to tackle around 2,400 Sq. Km. of surface area in the present stage and about 5,000 Sq. Km. at the ultimate stage. It is further seen that about 30% of evaporation retardation may be achieved by known evapo-retardation methods. Thus, it may perhaps be possible to effect a saving to the extent of 1,620 MCM at present and 3,375 MCM at the ultimate stage. Further reduction in evaporation losses may be possible with development of cost effective and economic methods of evapo-retardation. [7]

Causes of Evaporation:

- Temperature
- Vapor Pressure Difference
- Wind Effect
- Atmospheric Pressure

Quality of Water

Materials:

Following materials are used to cover evaporation such as continues Plastic Sheet Suspended Covers sheet, Modular Covers Chemical Covers etc.

Fig. 1: Plastic Balls

Fig. 2: Thermo-coal Sheet

Fig. 3: Polystyrene

Fig. 4: Styrofoam

METHODOLOGY

Following traditional methods are commonly used to reduce evaporation as

Wind Breakers

Reduction of Exposed Water Surface

Underground Storage

Treatment with Chemical Water Evaporation Retardants [WER]. [6]

Integrated Operation of Resources

But these are old methods which will not reduce evaporation as much hence to overcome this problem will introduce modified method to reduced evaporation.

ANALYSIS AND DESIGN

For analysis and design purpose, we choose farm pond located at Pimplegaon in Jalna district. The district has dry and tropical climate with very hot summer and mild winter with humid monsoon of moderate rainfall. The climate can be divided into three main season's viz. Hot to warm humid monsoon season from June to September

Cool dry winter season from October to February. Hot dry summer season from March to June,

Fig. 5: Monthly Rainfall of Jalna District

E aver T	entre an gallen	Sugar-	senteure	and the
1 - L	2 * He 114		19 Teste -	115
一種	TEL BERRY		4.120-3 A	an Conti
A DECEMBER	國偏应	1	() ()()	7
		3	0	D well
1	- essentia bi	1301		
E M	- sust			
田園	- manger			
100 1	- Inder			
	ALLE - Strain	Contraction of the local sector	owner lat m	
	Sec.			

Fig. 6: Layout & Details of field

Tuble 1. Seuson wise crop und men source of fulfilmen	Tabl	le 1.	: Season	wise	crop	and	their	source	of	fulf	ïllmen
---	------	-------	----------	------	------	-----	-------	--------	----	------	--------

Season	Сгор	Source of fulfillment				
Rainy	Cotton Tur Soyabin Dalimb Guava	Rainfall + Well				
Winter	Jawar Harbar Wheat Dalimb Guava	Well				
Summer	Mosambi Mango Guava Dalimb	From pond				

Fig. 7: Details of Farm Pond

	Table 2: Water requirement of crops							
Sr.	Crop	Area	Daily	Crop	Water			
No		in	duration	irrigation	required			
		acres	in	Days	by crop in			
			minute		liter			
1	Dalimb	4.0	20	60	4194480			
2	Peru	3.0	20	60	3145860			
3	Mosambi	3.0	20	30	1572930			
4	Mango	1.0	20	19	332063			
				Total =	= 9245333			
					= 9246000			

Table 3: Pure Evaporation from Pan 1

Date	Day	Temperature	Volume of
			Evaporation in liter
19-02-17	1	360/170	0.613
20-02-17	2	360/180	0.859
21-02-17	3	360/200	1.841
22-02-17	4	360/200	2.209
23-02-17	5	350/150	2.699
24-02-17	6	350/160	3.681
25-0217	7	360/170	4.404
26-02-17	8	380/170	4.663
27-02-17	9	360/170	5.153
28-02-17	10	350/170	5.521
		Total	5.154

Table 4: Evaporation using Plastic Balls from Pan 2

Date	Day	Temp.	Evaporation from pan in liter		
Date			With ball pan 2	Without ball pan 1	
19-02-17	1	360/17 0	Nil	0.613	
20-02-17	2	360/18 0	Nil	0.859	
21-02-17	3	360/20 0	0.102	1.841	
22-02-17	4	360/20 0	0.245	2.209	
23-02-17	5	350/15 0	0.490	2.699	
		Total	0.49	3.068	

Table 5: Evaporation using Thermo-coal from Pan						
-		Temp.	Evaporation from pan In liter			
Date	Day	romp.	With Thermo- coal pan 2	Without Thermo- coal pan 1		
24-02- 17	1	350/160	0.122	3.681		
25-02- 17	2	360/170	0.245	4.404		
26-02- 17	3	380/170	0.613	4.663		
27-02- 17	4	360/170	0.859	5.153		
28-02- 17	5	350/170	1.104	5.251		
		Total	1.182	2.086		

II. RESULTS AND GRAPHICAL PRESENTATION

III. CONCLUSION

Balls reduce evaporation up to 84.02% and the thermos-coal reduces evaporation up to 43.33% from the auxiliary pan. Less evaporation is observed as compare to thermos-coal sheet. Initial cost of thermos-coal sheet is low as compare to plastic balls but it requires frequent maintenance. We required 500 balls of diameter 4.5 cm to cover water surface of IS pan of diameter 125cm and 3 thermo-coal sheets of size 45cm x 120cm x 1cm For our tests initial investment for plastic ball is Rs 1150/- and thermos-coal sheet is Rs 50/- Hence balls are easy to use and durable than thermos-coal.

REFERENCES

- 1. Beard JT and Gainer JL (1970), Influence of solar radiation reflection on water evaporation, Journal of Geophysical research, vol 15, no 27, p5155-5163
- 2. Beard JT, Gainer JL and Wiebelt JA (1972), Solar reflectance of monolayer covered and cleaned water surfaces, Bureau of reclamation report, p62, ref 43
- Centre for Application of Science and Technology for Rural Development, Pune – Conservation of Water through use of water evaporation retardant chemicals, 1983.
- 4. Cluff BC (1978), The use of the compartmented reservoir in the Water Harvesting Agrisystems, Arid Land Plant Resources, Proceedings of the International Arid Lands Conference on Plant Resources; International Centre for Arid and Semiarid Land studies, Texas Tech. Univ. Lubbock, pp 482-500.
- 5. Cooley KR (1983), Evaporation reduction: Summary of long-term tank studies, Journal of

Irrigation and Drainage Engineering; vol. 109, No. 1, pp89- 98.

- 6. Crow FR, Allen JB, Fry WE and Mitchell AL (1969), Evaporation and its suppression by chemical films at Lake Hefner, American society of agricultural engineers, Transactions, p889-898
- 7. CWC (Central Water Commission), India (1990), Evaporation Control in Reservoirs.
- 8. Dedrick AR, Hansen TD and Williamson WR (1973), Floating sheets of foam rubbers for reducing stock tank evaporation, Journal of range management; vol 26, no 6, pp404-406.
- 9. Evaporation Control in Reservoirs, Report6 no 1087/ECR, Jan 1987, CSMRS, New Delhi.
- 10. Gangly JK and Kaul RN (1969) Technical Bulletin (AGRIC) No-22, ICAR, New Delhi.