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Abstract— Inherent inter disciplinarily of mathematical biology necessarily brings about two contrasting approaches. On one hand, 

there are mathematicians that have a taste for biology and develop analytically tractable models for the sake of the analysis itself 

On the other hand, there are theoretically inclined biologists who use relatively simple models in support of their empirical findings 

or develop very complex models, but also systems of dozens of differential equations, to simulate complex biological systems .The 

niche in between these two worlds is the playground for mathematical biologists or biomathematicians who develop and analyze 

and/or numerically simulate relatively sophisticated mathematical models to primarily address a biological question, yet with the 

attendant aim to get from these models as much as possible also mathematically.  In this study the patients suspected as well as 

confirmed cases of swine flu  from month of July 2013 to March 2014. A complete data of all the patients visiting these OPDs and 

swine Flu wards had been kept on the daily basis right from the month July. Each and every patient visiting either swine flu OPD  

or swine flu ward, who are suspected clinically  H1N1 positive were categorized in three categories according to the guidelines 

provided by Ministry of Health and Family welfare in August, 2009. 

 

 

 

I. INTRODUCTION 

 

Mathematical models of population dynamics build 

on this empirical knowledge, attempt at linking such lower-

level individual phenomena to upper-level population 

dynamics, help formulate ecological theories, and generate 

falsifiable hypotheses to be tested in the next round of 

empirical work (for a recent example, see Vercken et al, 

2011). For a real progress to be made, empirical and 

mathematical approaches in biology have to be used 

complementarily The wealth of mathematical biology can 

also be seen on the journal market. A great many of articles 

published in biological journals use mathematics to help 

address their focal questions (e.g. Vercken et al, 2011). 

Conversely, a plenty of articles published in journals on 

applied mathematics use biology as a source of challenging 

nonlinear problems to solve (e.g. Sun and Saker, 2005). 

 

Mathematical models of population dynamics are 

often expressed in terms of differential or difference 

equations, which describe how populations change with 

time, space, or stage of development (Murray, 1993; Case, 

2000; Kot, 2001; Mangel,2006). Biological processes are, 

however, inherently complex. Given that mathematical 

models disconnected from biological reality are of a little 

use, this complexity has to show up in the models. 

Unfortunately, this is paid by the fact that although it is 

often not that complicated to write down an adequate system 

of dynamical equations, frequently it is virtually impossible 

to analyze such equations by standard mathematical 

methods, or at least not for the most part. Thus, formal 

analysis needs to often be complemented with numerical 

simulations or use of a numerical bifurcation tool that 

exemplify and often even reveal interesting, analytically 

intractable system behavior. Simulations can thus be 

incredibly helpful, allowing the reader to see what the 

equations predict and allowing the author to obtain results 

from even very complex models. On top of that, many 

models in current mathematical biology are by definition 

simulation models, consisting of a set of rules of how 

individuals behave and interact. This is in part because 

current ecology increasingly recognizes impacts of 

individual variability on population dynamics. These rules 

are repeatedly simulated for an ensemble of individuals with 

the aim to come up with dynamics of the population as a 

whole. Such models are often referred to as individual-based 

models (IBMs; e.g. Grimm and Railsback, 2005). Due to 

substantial complexity of IBMs, techniques have been 

developed that allow for approximating IBM dynamics by 

differential or difference equations, thus providing further 

insight into the systems under study (e.g. Dieckmann et al, 

2000). 

 

II. INFLUENZA 
 

There are three distinct types of influenza virus that 

have been identified A, B, and C. These three antigenically 

distinct RNA viruses comprise the Orthomyxoviridae 

family. Flu types A and B are responsible for epidemics 

associated with increased hospitalization and death rates. 

Type B, which mutates at a slower rate than Type A, is 

found only in humans and seals. Consequently, a degree of 

immunity to Type B is maintained by a portion of the 

population. Because of this slower rate of antigenic change 

as well as limited host range, type B influenza never results 

in a pandemic (Zambon, 1999). Influenza type C usually 
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manifests itself in a very mild illness, or is completely 

asymptomatic and has not caused widespread outbreaks. 

Types B and C do not present a large magnitude of public 

health concern, thus we will focus on type A. 

 

Influenza virus A can be further divided into 

subtypes based on differences in two surface proteins called 

hemagglutinin (H) and neuraminidase (N). Hemagglutinin, 

making up approximately 80% of the surface proteins, 

functions in the attachment of the virus to a host cell. The 

remaining 20%, the neuraminidase, is thought to facilitate 

the spread of the progeny virus. Antivirals function by 

blocking either the hemagglutinin or the neuraminidase to 

prevent the multiplication of the virus in the host. Both H 

and N are antigens to which the human body can raise 

antibodies. There are 16 known H and nine known N 

subtypes that, through various combinations, make up all the 

subtypes of influenza A. As virus cells replicate, various 

mutations of the surface antigens occur as a response to host 

immunity; this is termed "antigenic drift". These types of 

gradual mutations result in seasonal flu outbreaks, but do 

not lead to pandemics since partial immunity remains in the 

population. In order to deal with this gradual evolution of 

the virus the World Health Organization (WHO) selects and 

reformulates the strains of the flu virus into the annual 

influenza vaccine. Influenza A virus also experiences 

another more worrisome type of mutation called "antigenic 

shift". Antigenic shift is a reassortment of gene segments, 

and it can occur when two or more different subtypes of 

influenza A infect the same cell. 

 

The unusually broad range of hosts susceptible to 

influenza A, especially birds, pigs and humans, appears to 

increase the likelihood of this event. Notably, in some parts 

of the world, humans live in close proximity to both swine 

and fowl, so antigenic shift is even more likely to effect the 

human population. It is not possible to predict the antigenic 

shift mutations, thus no  vaccines can be produced for these 

emerging strains ahead of time. This emergence of a new 

and unpredictable strain to which humans have no immunity 

or effective vaccine, can cause a global pandemic in a very 

short amount of time. 

 

 

A non-exhaustive list of Influenza A subtypes that have 

infected the human population (CDC). The strains currently 

endemic in humans are included in the seasonal flu vaccine.  

III. MATERIALS AND METHODS 

 

In this study the patients suspected as well as 

confirmed cases of swine flu from month of July 2013 to 

March 2014. A complete data of all the patients visiting 

these OPDs and swine Flu wards had been kept on the daily 

basis right from the month July. Each and every patient 

visiting either swine flu OPD  or swine flu ward, who are 

suspected clinically  H1N1 positive were categorized in 

three categories according to the guidelines provided by 

Ministry of Health and Family welfare in August, 2009. 

They were as follows: 

Category A:  

Mild fever plus cough / sore throat with or without 

body ache, headache, diarrhea and vomiting. No testing for 

H1N1 is required in such patients. 

 

Category B :  

i. Above signs and symptoms plus high grade fever and 

severe sore throat  

ii. Addition of above symptoms and signs plus one or more 

of the following conditions:  

 Children less than 5 years  

 Pregnant women  

 Age above 65 years  

 Having lung, heart, liver or kidney diseases, blood 

disorders,  

 diabetes, neurological disorders, cancer and HIV  

 Long term cortisone  

 

Category C : 

In addition to symptoms and signs of A and B if patients 

have one or more of the following:  

 Breathlessness, chest pain, drowsiness, low BP, 

sputum mixed with blood, bluish discolouration . 

 Irritability among small children, refusal to accept 

feeds . 

 Worsening of underlying chronic conditions . 

 

Those falling in category C, as per the guidelines 

are confirmed by viral isolation ( Polymerase  chain 

reaction, QIAGEN
TM

) in WHO reference laboratory by 

using throat and nasopharyngeal swabs are included in our 

study. Only those patients who fell in category C were 

subjected to viral isolation tests, while category B and 

Category A individuals were empirically given Oseltamivir 

and Azithromycin respectively, and are not included in the 

study. The patients are then classified according to age, 

gender, location, approach to either government or private 

hospital, duration of symptoms on admission, associated co 

morbid conditions, the final outcome, duration of death after 

symptoms and the district wise distribution of sale of 
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Oseltamivir. The incidence ratio for cases and deaths per 10 

lakh population is calculated and compared with other 

states. 

The mathematical model described by Kermack 

and McKendrick was used for prediction of epidemic curve 

and number of H1N1 cases. The model is also known as the 

Susceptible Infectious Recovered (SIR) model. 

The model assumes that when an infectious disease strikes a 

community, the disease often partitions the community into 

three categories individuals that are yet to be infected 

(susceptible people and denoted by S); infected individuals 

(assumed to be infectious and denoted by I); and those 

recovered and possess immunity to or killed by this disease 

(denoted by R). One infected individual is introduced into a 

closed population where everyone is susceptible, and each 

infected individual transmits influenza with probability β, to 

each susceptible individual they encounter. The severity of 

the epidemic and the initial rate of increase depend upon the 

value of the basic reproduction number (R0) which is 

defined as an average number of new infections that one 

case generates, in an entirely susceptible population, during 

the time they are infectious. The model assumes that if R0 > 

1, the disease will occur in an epidemic form; however, if R0 

< 1, the outbreak will die out. R0 for H1N1 influenza is 

equal to β times average duration of the infectious period. 

 

The model consists of a system of three coupled 

nonlinear ordinary differential equations,  

dS/dt = -βSI 

dI/dt = βSI - γI 

dR/dt =  γI 

 
 

where, β is the infection rate which determines the 

number of susceptible persons infected per day by the 

infected person, γ is the recovery rate and 1/ γ is the 

expected infectious period or the time until recovery. 

We have used the data of Mexico outbreak for R0 as 1.4 to 

1.6, and for the expected infection period, 1/γ, as 3 days. We 

iterated the model for various values of R0 =1.2, 1.3, 1.4, 1.5 

and 1.6 to determine the effect of variations in R0 on the 

potential size and time course of the epidemic, while 

keeping the value of 1/γ constant at 3 days. We further 

simulated the model using varying values of 1/γ ranging 

from 2 to 6 days, while keeping the value of R0 constant at 

1.4. 

 

 

 

 

 

Model 1: 1/γ constant, R0 variable 

 

 
Model 2: R0 constant, 1/γ variable 
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