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I. INTRODUCTION

Prof. L.A. Zadeh’s [19] in 1965 introduced of
the concept of ‘fuzzy subset’, in the year 1968, C L.
Chang [4] introduced the structure of fuzzy topology as
an application of fuzzy sets to general topology.
Subsequently many researchers like, C.K. Wong[18],
R.H. Warren [17],R. Lowen[7], A.S. Mashhour[11],
K.K. Azad[1], M. N. Mukherjee[12],G.
Balasubramanian &P. Sundaram [2] and many others
have contributed to the development of fuzzy
topological spaces. The image and the inverse image of
fuzzy subsets under Zadeh’s functions and their
properties proved by C.L.Chang [4] and R.H.Warren
[17] are included.

Fuzzy topological spaces and some basic
concepts and results on fuzzy topological spaces from
the works of C.L.Chang [4], R.H.Warren [17], and
C.K.Wong [18] are presented. And some basic
preliminaries are included. N.Levine [7] introduced
generalized closed sets (g-closed sets) in general
topology as a generalization of closed sets. Many
researchers have worked on this and related problems
both in general and fuzzy topology. Dr. Sadanand Patil
[14, 15 &16] in the year 2009 and R. Devi and M.

Muthtamil Selvan[5] in the year 2004, are introduced
and studied g-continuous maps.

The class of wg**- closed fuzzy sets is placed
properly between the class of closed fuzzy sets and the
class of wg- closed fuzzy sets. The class of wg**-
closed fuzzy sets is properly placed between the class
of closed fuzzy sets and the class of wg- closed fuzzy
sets.

Il. PRELIMINARIES

Throughout this paper (X, T), (Y,0) & (Z,y) or
(simply X, Y & Z) represents non-empty fuzzy
topological spaces on which no separation axiom is
assumed unless explicitly stated. For a subset A of a
space (X, T). cl (A) , int(A) & C(A) denotes the
closure, interior and the compliment of A respectively.

Definition 2.01: A fuzzy set A of a fts (X, T) is
called:
1) asemi-open fuzzy set, if A <cl(int(A)) and a semi-
closed fuzzy set, if int(cl(A)) <0 [13]
2) a pre-open fuzzy set, if A < int(cl(A)) and a pre-
closed fuzzy set, if cl(int(A)) < A [13]
3) a a-open fuzzy set, if A < int(cl(int(A))) and a o-
closed fuzzy set, if cl(int(cl(A))) < A [14]

The semi closure (respectively pre-closure, o-
closure) of a fuzzy set A in a fts (X, T) is the
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intersection of all semi closed (respectively pre closed
fuzzy set, a-closed fuzzy set) fuzzy sets containing A
and is denoted by scl(A) (respectively pcl(A), acl(A)).

Definition 2.02: A fuzzy set A of a fts (X, T) is
called:

1) ageneralized closed (g-closed) fuzzy set, if
cl(A) <U ,whenever A <U and U is open fuzzy
Setin (X, T). [2]
2) a weakly-generalized-closed (wg-closed) fuzzy
Set, if cl(A) < U, whenever A <U and U is open
fuzzy setin (X, T).[14]
3) a weakly-generalized* closed (wg*-closed) fuzzy
set, if cl(A) < U, whenever A < U and U is open fuzzy
setin (X,T). [14 ,15&16]

Complement of g-closed fuzzy (respectively wg-
closed fuzzy set and wg*-closed fuzzy set) sets are
called g-open (respectively wg-open fuzzy set and wg*-
open fuzzy set) sets.

Definition 2.03: Let X, Y be two fuzzy topological
spaces. A function f: X—Y is called

1) Fuzzy continuous (f-continuous) [14 ,15&16] if f
!(B) is open fuzzy set in X , for every open fuzzy set
BofY

2) Fuzzy generalized- continuous (fg-continuous)
function [14 ,15&16] if f1(A) is g-closed fuzzy set
in X , for every closed fuzzy set A of Y

3) Fuzzy g*-continuous (fg*-continuous) function[14
,15&16] if f1(A) is g*-closed fuzzy set in X , for
every closed fuzzy set A of Y
Definition 2.04: Let X, Y be two fuzzy topological

spaces. A function f: X—Y is called

1) Fuzzy -open (f-open) [14, 15&16] iff f (V) is
open fuzzy set in Y, for every open fuzzy set
in X.

2) Fuzzy g-open (fg-open) [14, 15&16] iff

f (V) is g-open- fuzzy set in Y, for every

open fuzzy set in X.

3) Fuzzy g*-open (fg*-open) [14, 15&16] iff
f(V) is g-open- fuzzy set in Y, for every open
fuzzy set in X.

111. Weakly g** CLOSED FUZZY SETS
Definitions 3.01: A fuzzy set A of fuzzy topological
space in (X, T) is called weakly g** closed fuzzy sets if
cl(int(A)) < U whenever A < U and U is g*- open
fuzzy setin (X,T).

Theorem 3.02: Every closed fuzzy set is weakly g**
closed fuzzy set.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 3.03: Let X={a, b, c} and the fuzzy sets A
and B be defined as follows
A={(a,0.4),(b,0.5),(c,0.7)}, B={(a,1),(b,0.9),(c,0.8)}.
Let T= {0, 1, A}.Then (X, T) is a fts. Note that the
fuzzy subset B is weakly g** closed fuzzy set in (X, T)
but not a closed fuzzy set in (X, T).
Theorem 3.04: Every g** - closed fuzzy set is weakly
g** - closed fuzzy set in (X, T).
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 3.05: Let X={a,b,c} fuzzy sets A and B be
defined as follows A={(a,0.2),(b,0.5),(c,0.3)} and
B={(a,0.5),(b,0.2),(c,0.3)}. Consider
T={0, 1, A}.Then (X, T) is fts. The fuzzy set B is wg*-
closed but not g*closed fuzzy set in X.
Theorem 3.06: Every weakly g** closed fuzzy set is
weakly g-closed fuzzy set in fts X.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 3.07: In the example 3.05, The fuzzy set B is
wg-closed but not wg**-closed fuzzy set.
Theorem 3.08: Every weakly g** closed fuzzy set is
weakly g*-closed fuzzy set in fts X.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 3.09: In the 3.05, The fuzzy set B is wg*-
closed but not wg**-closed fuzzy set.
Theorem 3.10: If a fuzzy set A of a fts X is both open
and wg**-closed fuzzy set then it is a closed fuzzy set.
Proof: Suppose a fuzzy set A of fts X is both open and
wg**-closed. Now A < A, A is open and so g*-open.
Then we have cl(int A) < A which implies cl(A) < A
Since A is open. Since A < cl(A), we have cl(A) = A.
Thus A is closed fuzzy set.
Theorem 3.11: If a fuzzy set A is both open and wg**-
closed then it is both regular open and regular closed
fuzzy set.
Proof: Omitted.
Theorem 3.12: If a fuzzy set A of fts X is open and
wg**-closed then A is g*-closed.
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Proof: Omitted.

Theorem 3.13: If a fuzzy set A of fts X is open and
wg- closed then A is wg* closed.

Proof: Suppose A is open and wg-closed. Let A < U
where U is g-open. Since A is wg-closed we have

A < A, A is open implies cl(int A) < A < U. That is
cl(int A) < U and hence A is wg*-closed.

Theorem 3.14: If A is wg**-closed fuzzy set and cl(int
A) A (1-cl(int A))=0 then cl(int A) A (1-A) has no non
zero g-closed fuzzy set.

Proof: Suppose F is any g-closed fuzzy set such that F
<cl(int A) A (1-A). Now F < 1-A, which implies that A
< 1-F, 1-F is g-open. Since A is wg*-closed, cl(int A) <
1-F, Which implies F < 1- cl(int A).Thus F < cl(int A)
and F < 1-cl(int A).Therefore

F < cl(int A) A (1-cl(int A)) = 0. Which implies that F
= 0. Hence the result follows.

Theorem 3.15: If a fuzzy set A is weakly g** closed
fuzzy set in X such that A <B < cl(int A), then B is also
a weakly g** closed fuzzy set in X.

Proof: Let U be a g-open fuzzy set in X, such that

B < U, then A < U. Since A is weakly g* closed fuzzy
set, then by definitions cl(int(A)) < U. Now int B<B <
cl(int(A)),which implies cl(int(B)) < cl(cl(int A) = cl(int
A) < U. That is cl(int(B)) < U. Hence B is a weakly g**
closed fuzzy set.

Theorem 3.16: Let A <Y < X and suppose that A is
wg**- closed in fts X. Then A is wg**-closed relative
toY.

Proof: Given that A <Y < X and A is wg**- closed
fuzzy set .To prove that A is wg**-closed relative to Y.
Let A<Y A G. Then A < G where G is g*-open in X
Since A is wg** -closed in X. cl(int A) < G. which
implies that cl(int A) <Y A cl(int A) and therefore
cl(int A) <Y A G. Hence A is wg**-closed relative to
Y.

We introduce weakly g** open fuzzy set

Definition 3.17: A fuzzy set A of the fts (X, T) is called
weakly g ** open fuzzy set if its complement  1-A is
weakly g** closed fuzzy set.

Theorem 3.18: A fuzzy set A of a fts X is weakly g**
open fuzzy set iff F <int(cl A)

Whenever F is g*-closed fuzzy set and F < A

Proof: Omitted.

Theorem 3.19: Every open fuzzy set is a weakly g**
open fuzzy set.

Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 3.20: Let X= {a,b,c}. Define the fuzzy sets A
and B as follows. A={(a,0.4),(b,0.5),(c,0.7)},
B={(a,0),(b,0.1),(c,0.2)}. Then (X, T) is a fts with the
fuzzy topology T= {0, 1, A}. Here the fuzzy set B is
weakly g** open fuzzy set but not a open fuzzy set in

Theorem 3.21: If a fts every wg**-open fuzzy set is
wg-open.
Proof: Omitted.

The converse of the above theorem need not
be true as shown from the following example.

Example 3.22: In the example 3.20, Here the fuzzy set
B is weakly g closed fuzzy set but not a wg* closed
fuzzy set in X.

Theorem 3.23: If int (cl (A)) < B < A and if A is
weakly g** open fuzzy set, B is weakly g** open fuzzy
set in a fts X.

Proof: We have int(cl (A)) < B < A .Then (1- A) < (1-
B) < cl(int(1-A)) and since (1—A) is weakly g ** closed
fuzzy set and by theorem 2.19 .we have (1-B) is weakly
g** closed fuzzy set in X. Hence B is weakly g** open
fuzzy set is fts X.

Theorem 3.24: Every g*-open fuzzy set is wg**-open.
Proof: Omitted.

The converse of the above theorem need not

be true as shown from the following example.

Example 3.25: In the example 3.20, the fuzzy set

1-B is wg**-open but not g*-open in X.

Theorem 3.26: A Finite union of weakly g** closed
fuzzy set is a weakly g** closed fuzzy set.

Proof: Omitted.

Remark 3.27: The intersection of two wg**-open
fuzzy sets need not be wg** -open.

Fuzzy wg*-closure (wg* cl) and fuzzy wg*-
interior (wg* int) of a fuzzy set are defined as
follows.

Definition 3.28: If A is any fuzzy set in a fts, then
wg** cl(A)= A{U:U is wg**-closed fuzzy set and
A<U}

wg**int(A)= V{V:V is wg**-open fuzzy set and
A>V}

Theorem 3.29: Let A be any fuzzy set in a fts (X, T)
Then

wg**  cl(A)=wg**cl(1- A)=1- wg**cl(1- A)=1-
wg**int(A) and wg** int(1-A)=1-wg**cl(A)

Proof: Omitted.
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Theorem 3.30: In a fts (X, T), a fuzzy set A is weakly
g**-closed iff A= wg** -cl(A).

Proof: Let A be a weakly g** -closed fuzzy set in fts
(X, T).since A < A and A is weakly g** -closed fuzzy
set, A € {f:f is weakly g** -closed fuzzy set and A < f}
and A < fimplies that

A= A {f:if is weakly g** -closed fuzzy set and A < f}
that is A = wg**-cl(A)

Conversely, Suppose that A= wg**-cl(A), that
is A=A { fif is weakly g** -closed fuzzy set and A <
f}. This implies that A € {f:f is weakly
g** -closed fuzzy set and A < f}. Hence A is weakly
g**-closed fuzzy set.

Theorem 3.31: In fts X be the following results hold
for fuzzy weakly g**-closer
1) weakly g**-cl(0)=0
2) weakly g**-cl(A) is weakly g**-closed fuzzy
setin X
3) weakly g**-cl(A) < weakly g**-cl(B) if
A<B
4) weakly g**-cl(weakly g**-cl(A)) =. weakly
g**-cl(A)
5) weakly g**-cl(A vV B) > weakly g**-cl(A) V
weakly g**-cl(B)
6) weakly g**-cl(A A B) < weakly g**-cl(A) A
weakly g**-cl(B)
Proof: The easy verification is omitted.
Theorem 3.32: In a fts X, a fuzzy set A is weakly g**-
open fuzzy set iff A=wg**-int(A).
Proof: Omitted.
Theorem 3.33: In fts X be the following results hold
for fuzzy weakly g**-interior
1) weakly g**-int((0)=0
2) weakly g**-int(A) is weakly g**-open fuzzy

setin X

3) weakly g**-int(A) < weakly g**-int(B) if
A<B

4) weakly g**-int(weakly g**-int(A)) = weakly
g**-int(A)

5) weakly g**-int(AVB) > weakly g**-int(A) V
weakly g**-int(B)
6) weakly g**-int(AAB) < weakly g**-int(A) A
weakly g**-int(B)
Proof: The easy verification is omitted.
Theorem 3.34: In a fts X every weakly g** open fuzzy
set is wg-open fuzzy set.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 3.35: In the example 3.20, the fuzzy subset 1-
B={(a,0.4),(b,0.4),(c,0.5)} is wg -open fuzzy set but not
weakly g** open fuzzy set in X.
Theorem 3.36: In a fts X, every weakly g** open fuzzy
set is wg*-open fuzzy set.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 3.37: In the example 3.20, the fuzzy subset 1-
B={(a,0.4),(b,0.4),(c,0.5)} is wg*-open fuzzy set but
not weakly g** open fuzzy set in X.
Theorem 3.38: If A < B < X where A is weakly g**
open fuzzy relative to B and B is weakly g** open
fuzzy relative to X, Then A is weakly g** open fuzzy
relative to fts X.
Proof: Omitted.
Remarks 3.39: The following diagram shows the
relationships of weakly g** closed fuzzy sets with some
other fuzzy sets.

e
| 7g - Ciosat By e

closad furzy | —| weakly g** closed fuzzy set \

wet- chosxd fimy st

Where A—" B (A =——= B)

Represents A implies B but not conversely. (A and B
are independent).

IV. FUZzY WEAKLY g** -CONTINUOUS
MAPPING

In this section the concept of fuzzy wg**-
continuous, fuzzy wg**-irresolute functions and fuzzy
wg**-homeomorphism, fuzzy wg**-open and fuzzy
wg**-closed mapping in fuzzy topological spaces have
been introduced and studied.
Definition 4.01: Let X and Y be two fts. A function f:
X—Y is said to be fuzzy wg**-continuous  (briefly
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fwg**-continuous) if the inverse image of every open
fuzzy setin Y is wg**-open fuzzy set in X.
Theorem 4.02: A function fi X—>Y is fwg**-
continuous iff the inverse image of every closed fuzzy
setin Y is wg**-closed fuzzy set in X.
Proof: Omitted.
Theorem 4.03: Every f-continuous function is
fwg**-continuous.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 4.04: Let X=Y= {a,b,c} and the fuzzy sets
A,B and C be defined as follows.
A={(a,0),(b,0.1),(c,0.2)}, B={(a,0.4),(b,0.5),(c,0.7)},
C={(a,1),(b,0.9),(c,0.8)}. Consider T={0, 1, B} and
6=1{0, 1, A}. Then (X, T) and (Y,0) are fts. Define f:
X—Y by f(a) =a, f(b) =b and f(c) =c. Then fis
fwg**-continuous but not f-continuous as the fuzzy set
C is closed fuzzy set in Y and f*(C) =C is not closed
fuzzy set in X but wg**-closed fuzzy set in X. Hence f
is fwg**-continuous
Theorem 4.05: Every fwg**-continuous function is
fwg- continuous.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 4.06: Let X=Y= {a,b,c} and the fuzzy sets
ABC and D be defined as follows.
A={(a,0.2),(h,0.5),(c,0.3)},
B={(a,0.8),(b,0.5),(c,0.7)},
C={(a,0.5),(b,0.2),(c,0.3)}and
D={(a,0.5),(b,0.8),(c,0.7)}. Consider T={0,1,A} and ©
={0,1,A,B}. Then (X, T) and (Y,o) are fts. Define f
X—Y by f (a) =b, f (b) =a and f(c) =c. Then f is fwg-
continuous but not fwg**-continuous as the inverse
image of closed fuzzy set A in Y is f*(A) =C which is
not wg**-closed fuzzy set in X. Hence f is fwg-
continuous.
Theorem 4.07: Every fwg**-continuous function is
fwg*- continuous.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 4.08: In the example 4.06, Then f is fwg*-
continuous but not fwg**-continuous as the inverse
image of closed fuzzy set A in Y is f*(A) =C which is
not wg**-closed fuzzy set in X. Hence f is fwg*-
continuous

Theorem 4.09: If f: X—Y is f wg**-continuous and g:
Y — Z is f-continuous, then gof:X— Z is fwg**-
continuous.

Proof: Omitted.

Remark 4.10: The following diagram shows the
relationship of fwg**-continuous maps with some other
fuzzy maps.

frp-contimaous

f-contizpous —leg“mnthnous

frg*-continuous

Where A—" B (A -=——= 1) rgpresents

A implies B but not conversely. (A and B are
independent).
Theorem 4.11: Let X1 and X, be fts and
Pi: X1 x X,—X; (i=1, 2) be the projection mappings. If
f: X—X; X X, is fwg**-continuous then the Pjof:X—X;
(i=1,2) is fwg**-continuous.
Proof: Omitted.
Theorem 4.12: Every f -strongly continuous function is
fwg**-continuous.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 4.13: In the example 3.05, the function f is
fwg**-continuous but not f -strongly continuous, for
the fuzzy set C in Y, ¥(C) =C is not both open and
closed fuzzy set in X
Theorem 4.14: Every f -perfectly continuous function
is fwg**-continuous.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 4.15: In the example 3.05, the function f is
fwg**-continuous but not f-perfectly continuous as the
fuzzy set A is open in Y and f1(A) = A is not both open
and closed fuzzy set in X
Theorem 4.16: Every f -completely continuous
function is fwg**-continuous.
Proof: Omitted.
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The converse of the above theorem need not
be true as seen from the following example.
Example 4.17: In the example 3.05, the function f is
fg**-continuous but not f -completely continuous as the
fuzzy set A is open in Y and f*(A) =A is not regular-
open fuzzy set in X
We introduce the following.
Definition 4.18: A function f: X—Y is said to be fuzzy
wg**-irresolute (briefly fwg**-irresolute) if the inverse
image of every wg**-closed fuzzy set in Y is wg**-
closed fuzzy set in X.
Theorem 4.19: A function f: X—Y is fwg**-irresolute
iff the inverse image of every wg**-open fuzzy set in Y
is wg**-open fuzzy set in X.
Proof: Omitted.
Theorem 4.20: Every fwg**-irresolute function is
fwg**-continuous.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 4.21: Let X =Y = {a,b,c} and the fuzzy sets
A,B,C,D and E be defined as follows.
A={(a1),(b,0),(c,0)} , B = {(a,0),(b,1),(c,0)}
C={(a1),(b,1),(c,0)}, D ={(a,1),(b,0),(c.1)},
E = {(a, 0),(b,1),(c,1)}. Consider
T={0,1,A,B,C,D}and = {0,1,C }. Then (X, T) and
(Y,0) are fts. Define f: X—Y by f(a)=b, f(b) = c and
f(c) = a. Then f is fwg**-continuous but not fwg**-
irresolute as the fuzzy set in E is wg**-closed fuzzy set
in 'Y, but f*(E) = C is not wg**-closed fuzzy set in X.
Hence f is fwg**-continuous.
Theorem 4.22: If f: X—Y is fwg**-continuous, and g:
Y—Z is f-continuous then gof: X—Z is f wg**-
continuous.
Proof: Omitted.
Theorem 4.23: Let f: X—Y, g: Y—Z be two functions.
If f and g are fwg**-irresolute functions then gof: X—Z
is fwg**-irresolute functions.
Proof: Omitted.
Theorem 4.24: Let f: X—Y, g: Y—Z be two functions.
If fis fwg**-irresolute and g is fwg**-continuous then
gof: X—Z is fwg**-continuous.
Proof: Omitted.
Definition 4.25: A function f: X—Y is said to be fuzzy
gc-irresolute (briefly fgc-irresolute) function if the
inverse image of every g-closed fuzzy set in Y is g-
closed fuzzy set in X.

Theorem 4.26: f: X—Y be a fgc-irresolute and a f-
closed map. Then f (A) is a wg**-closed fuzzy set of Y,
for every wg**-closed fuzzy set A of X.

Proof: Omitted.

We introduce the following.

Definition 4.27: A function f: X—Y is said to be fuzzy
wg**-open (briefly fwg**-open) if the image of every
open fuzzy set in X is wg**-open fuzzy setin Y.
Definition 4.28: A function f: X—Y is said to be fuzzy
wg**-closed (briefly fwg**-closed) if the image of
every closed fuzzy set in X is wg**-closed fuzzy set in
Y.

Theorem 4.29: Every f-open map is fwg**-open map.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 4.30: Let X =Y = {a,b,c} and the fuzzy sets
A,B, and C be defined as follows.
A= {(a,0),(b,0.1),(c,0.2)} , B={(a,0.4),(b,0.5),(c,0.7)}
C={(@1),(b,0.9),(c,0.8)}. Consider
T ={0,1,A}and o= {0,1,B }. Then (X, T) and (Y,o)
are fts. Define f: X—Y by f(a)=a, f(b) =b and f(c) =c.
Then f is fwg**-open map but not f-open map as the
fuzzy set A open fuzzy setin X, its image f(A) = A'is
not open fuzzy set in Y which is wg**-open fuzzy set
inYy.
Theorem 4.31: Every fwg**-open map is fwg-open.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
Example 4.32: Let X =Y = {a,b,c} and the fuzzy sets
A,B, and C be defined as follows.
A= {(a,0.2),(b,0.5),(c,0.3)},
B ={(a,0.8),(b,0.5),(c,0.7)},
C={(a,0.5),(h,0.2),(c,0.3)}. Consider
T={0,1,A}and = {0,1,A,B }. Then (X, T) and (Y,5)
are fts. Define f: X—Y by f(a)=b, f(b) = a and f(c) =c.
Then the function f is fgs-open map but not fwg**-open
map as the image of open fuzzy set Ain X is f(A) =C
open fuzzy setin Y but not wg**-open fuzzy setinY .

Theorem 4.33: Every f-closed map is fwg**-closed
map.
Proof: Omitted.

The converse of the above theorem need not
be true as seen from the following example.
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Example 4.34: Let X =Y = {a,b,c} and the fuzzy sets
A,B, and C be defined as follows.

A ={(a,0),(b,0.1),(c,0.2)},

B ={(a,0.4),(h,0.5),(c,0.7)},
C={(a,1),(b,0.9),(c,0.8)}. Consider
T=1{0,1,A}and o= {0,1,B }. Then (X, T) and (Y,c)
are fts. Define f: X—Y by f(a)=a, f(b) =b and f(c) =c.
Then f is fwg**-closed map but not f-closed map as
the fuzzy set C is closed fuzzy set in X, and its image
f(C) = C is wg**-closed fuzzy set in Y but not closed
fuzzy setin Y.

Theorem 4.35: A map £:X—Y is fwg**-closed iff for
each fuzzy set S of Y and for each open fuzzy set U
such that £1(S) < U, there is a wg**-open fuzzy set V of
Y such that S <V and f}(V) < U.
Proof: Omitted.
Theorem 4.36: If a map f: X—Y is fgc-irresolute and
fwg**- closed and A is wg**- closed fuzzy set of X,
then f(A) is wg**- closed fuzzy setin'Y.
Proof: Omitted.
Theorem 4.37: If f: X—Y is f-closed map and
h: Y—Z is fwg**- closed maps, then hof: X—Z s
fwg**- closed map.
Proof: Omitted.
Theorem 4.38: Let f: X—Y be an f -continuous, open
and fwg**- closed surjection. If X is regular fts then Y
is regular.
Proof: Omitted.
Theorem 4.39: If f: X—Y and h: Y—Z be two maps
such that hof: X—Z is fwg**- closed map.
i) If fis f-continuous and surjective, then h is
fwg**- closed map.
ii) If his fwg**- irresolute and injective, then f is
fwg**- closed map.
Proof: Omitted.
Definition 4.40: Let X and Y be two fts. A bijective
map f: X—Y is called fuzzy-homeomorphism (briefly
f-homeomorphism) if f and f* are fuzzy-continuous.
We introduced the following.
Definition 4.41: A function f: X—Y is called
fuzzy  wg**- homeomorphism (briefly — wg**-
homeomorphism) if f and f* are wg**- continuous.
Theorem 4.42: Every f-homeomorphism is fwg**-
homeomorphism.
Proof: Omitted.
The converse of the above theorem need not
be true as seen from the following example.

Example 4.43: Let X=Y= {a,b,c} and the fuzzy sets A,
B and C be defined as follows. A={(a,1),(b,0),(c,0)},
B={(a,1),(b,1),(c,0)}, C={(a,1),(b,0),(c,1)}. Consider
T= {0,1,A} and 0={0,1,B}. Then (X, T) and (Y,o) are
fts. Define
f: X—Y by f(a)=a, f(b)=c and f(c)=b. Then f'is
fwg**- homeomorphism but not f-homeomorphism as
A is open fuzzy set in X and its image of f(A)=A is not
open fuzzy setin Y. f:Y—X is not
f-continuous.
Theorem 4.44: Let f: X—Y be a bijective function.
Then the following are equivalent:
a) fis fwg**- homeomorphism.
b) fis fwg**- continuous and fwg**- open maps.
c) f is fwg**- continuous and fwg**- closed
maps.
Proof: Omitted.
Definition 4.45: Let X and Y be two fts. A bijective
map f: X—Y is called fuzzy fwg**- c-homeomorphism
(briefly fwg**- c-homeomorphism) if f and f* are fuzzy
wg**- irresolute.
Theorem 4.46: Let X, Y, Z be fuzzy topological spaces
and f: X—>Y, g: Y—>Z be fwg**- c-homeomorphisms
then their composition gof: X—Z is fwg**- c-
homeomorphism.
Proof: Omitted.
Theorem 4.47: Every fwg**- c-homeomorphism is
fwg**- homeomorphism.
Proof: Omitted.
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