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Abstract:-- In this chapter we are going to study about the history and the applications of integral calculus.  Isaac Newton and 

Gottfried Leibniz independently discovered calculus in the mid- 17 century. Integration represents the inverse operation of 

differentiation. Integral calculus is used to improve the important infrastructures. Integral calculus is often used to create the most 

robust design. At the end of this chapter we will come to know about the basic applications of integral calculus in engineering field 

which are:- Average function value, Area between two curves, Volume of solid of revolution/ Methods of rings, Work done. 
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INTRODUCTION 

 

In mathematics, an integral assigns umbers to functions in 

a way that can describe displacement, area, volume, and 

other concepts that arise by combining infinitesimal data. 

Integration is one of the two main operations of calculus, 

with its inverse, differentiation, being the other. Given a 

function f of a real variable x and an interval [a, b] of the 

real line, the definite integral. 


b

a

dxxf )(  

Is defined informally as the signed area of the region in 

the xy-plane that is bounded by the graph of f, the x-axis 

and the vertical lines x = a and x = b. The area above 

the x-axis adds to the total and that below the x-axis 

subtracts from the total. 

Roughly speaking, the operation of integration is the 

reverse of differentiation. For this reason, the 

term integral may also refer to the related notion of 

the ant derivative,a function F whose derivative is the 

given function f. In this case, it is called an indefinite 

integral and is written  

 dxxfxF )()(  

The integrals discussed in this article are those 

termed definite integrals. It is the fundamental theorem of 

calculus that connects differentiation with the definite 

integral: if f is a continuous real-valued function defined 

on a closed interval [a, b], then, once an anti 

derivative F of f is known, the definite integral of f over 

that interval is given by: 
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The principles of integration were formulated 

independently by Isaac Newton and Gottfried Leibniz in 

the late 17th century, who thought of the integral as an 

infinite sum of rectangles of infinitesimal width. Bernhard 

Riemann gave a rigorous mathematical definition of 

integrals. It is based on a limiting procedure that  

approximates the area of a curvilinear region by breaking 

the region into thin vertical slabs. Beginning in the 

nineteenth century, more sophisticated notions of 

integrals began to appear, where the type of the function 

as well as the domain over which the integration is 

performed has been generalised. A line integral is defined 

for functions of two or three variables, and the interval of 

integration [a, b] is replaced by a certain curve connecting 

two points on the plane or in the space. In a surface 

integral, the curve is replaced by a piece of a surface in 

the three-dimensional space. 

 

HISTORY: 

PRE- CALCULUS INTEGRATION: The first 

documented systematic technique capable of determining 

integrals is the method of exhaustion of the ancient Greek 

astronomer Eudoxus (ca. 370 BC), which sought to find 

areas and volumes by breaking them up into an infinite 

number of divisions for which the area or volume was 

known. This method was further developed and employed 

by Archimedes in the 3rd century BC and used to 

calculate areas for parabolas and an approximation to the 

area of a circle. 

 

A similar method was independently developed in China 

around the 3rd century AD by Liu Hui, who used it to 

find the area of the circle. This method was later used in 

the 5th century by Chinese father-and-son mathematicians 

ZuChongzhi  and ZuGeng to find the volume of a sphere 

(Shea 2007, Katz 2004, pp. 125–126). 

 



 
 

ISSN (Online) 2456 -1304 
 

 International Journal of Science, Engineering and Management (IJSEM)  

Vol 2, Issue 11, November 2017 
 

 

                                                     All Rights Reserved © 2017 IJSEM                                       113 

The next significant advances in integral calculus did not 

begin to appear until the 17th century. At this time, the 

work of Cavalieri with his method of Indivisibles, and 

work by Fermat, began to lay the foundations of modern 

calculus, with Cavalieri computing the integrals of xn up 

to degree n = 9 in Cavalieri's quadrature formula. Further 

steps were made in the early 17th century by Barrow and 

Torricelli, who provided the first hints of a connection 

between integration and differentiation. Barrow provided 

the first proof of the fundamental theorem of calculus. 

Wallis generalized Cavalieri’s method, computing 

integrals of x to a general power, including negative 

powers and fractional powers 

 

Newton and Leibniz: 

The major advance in integration came in the 17th 

century with the independent discovery of the 

fundamental theorem of calculus by Newton and Leibnitz. 

The theorem demonstrates a connection between 

integration and differentiation. This connection, combined 

with the comparative ease of differentiation, can be 

exploited to calculate integrals. In particular, the 

fundamental theorem of calculus allows one to solve a 

much broader class of problems. Equal in importance is 

the comprehensive mathematical framework that both 

Newton and Leibniz developed. Given the name 

infinitesimal calculus, it allowed for precise analysis of 

functions within continuous domains. This framework 

eventually became modern calculus  whose notation for 

integrals is drawn directly from the work of Leibnitz. 

 

Formalization:  

While Newton and Leibniz provided a systematic 

approach to integration, their work lacked a degree of 

rigour. Bishop Berkeley memorably attacked the 

vanishing increments used by Newton, calling them 

"ghosts of departed quantities". Calculus acquired a 

firmer footing with the development of limits. Integration 

was first rigorously formalized, using limits, by Riemann. 

Although all bounded piecewise continuous functions are 

Riemann-integrable on a bounded interval, subsequently 

more general functions were considered—particularly in 

the context of Fourier analysis—to which Riemann's 

definition does not apply, and Lebesgue formulated a 

different definition of integral, founded in measure theory 

(a subfield of real analysis). Other definitions of integral, 

extending Riemann's and Lebesgue’sapproaches were 

proposed. These approaches based on the real number 

system are the ones most common today, but alternative 

approaches exist, such as a definition of integral as the 

standard part of an infinite Riemann sum, based on the 

hyper real number system 

Historical notation:  

Isaac Newton used a small vertical bar above a variable to 

indicate integration, or placed the variable inside a box. 

The vertical bar was easily confused with .x or x′, which 

are used to indicate differentiation and the box notation, 

was difficult for printers to reproduce, so these notations 

were not widely adopted. 

The modern notation for the indefinite integral was 

introduced by Gottfried Leibniz in 1675 (Burton 1988, p. 

359; Leibniz 1899, p. 154). He adapted the integral 

symbol. ∫, from the letter ſ (long s), standing for summa 

(written as ſumma; Latin for "sum" or "total"). The 

modern notation for the definite integral, with limits 

above and below the integral sign, was first used by 

Joseph Fourier  in Mémoires of the French Academy 

around 1819–20, reprinted in his book of 1822 (Cajori 

1929, pp. 249–250; Fourier 1822, §23). 

 

APPLICATION: 

 

Integrals are used extensively in many areas of 

mathematics as well as in many other areas that rely on 

mathematics. 

For example, in probability theory, integrals are used to 

determine the probability of some random variable falling 

within a certain range. Moreover, the integral under an 

entire probability density function must equal 1, which 

provides a test of whether a function with no negative 

values could be a density function or not. 

Integrals can be used for computing the area of a two-

dimensional region that has a curved boundary, as well as 

computing the volume of a three-dimensional object that 

has a curved boundary. 

Integrals are also used in physics, in areas like kinematics 

to find quantities like displacement, time, and velocity. 

For example, in rectilinear motion, the displacement of an 

object over the time interval is given by:    



b

a

dttvbxax ,)()()(  

Where v (t)  is the velocity expressed as a function of 

time.  

 

The work done by a force F(x)(given as a function of 

position) from an initial position A to a final position B  

is: 



B

A
BA

dxxFW )(  

 

Here is a listing of applications covered in this chapter. 
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Average Function Value-  We can use integrals to 

determine the average value of a function. 

  

Area Between Two Curves- In this section we’ll take a 

look at determining the area between two curves. 

  

Volumes of Solids of revolution/Methods of Rings-  This 

is the first of two sections devoted to find the volume of a 

solid of revolution.  In this section we look at the method 

of ring. 

  

Work- The final application we will look at is 

determining the amount of work required to move an 

object. 

 

1)AVERAGE FUNCTION VALUE: The average value 

of a function  f(x) over the interval [a, b] is given by:     



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2) AREA BETWEEN CURVES: In this section we are 

going to look at finding the area between two curves. 

There are actually two cases that we are going to looking 

at.  

In the first case we want to determine the area between 

y=f(x) and y=g(x) on the interval, we are also going to 

assume that f(x)>=g(x). Then area is equal to A. 

 
 

 

b
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The second case is almost identical to the first case. Here 

we are going to determine the area between x=f(y) and 

x=g(y) on the interval [c, d] with f(y)>=g(y).  

 
   

 

d

c
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3) Volume of solid of revolution/ Method of rings: In this 

section we will start looking at the volume of a solid of 

revolution.  We should first define just what a solid of 

revolution is.  To get a solid of revolution we start out 

with a function y=f(x) on an interval [a, b]. 

 
 We then rotate this curve about a given axis to get the 

surface of the solid of revolution. For purposes of this 

discussion let’s rotate the curve a about the x-axis, 

although it could be any vertical or horizontal axis.  

Doing this for the curve above gives the following three 

dimensional regions. 

 
What we want to do over the course of the next two 

sections is to determine the volume of this object. In the 

final the Area and Volume formulas section of the Extras 

chapter we derived the following formulas for the volume 

of this solid. 
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Where, A(x) and A(y) is the cross-sectional area of the 

solid.  There are many ways to get the cross-sectional area 

and we’ll see two (or three depending on how you look at 

it) over the next two sections.  Whether we will use A(x) 

or A(y) will depend upon the method and the axis of 

rotation used for each problem. 









d
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b
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dyyAV

dxxAV
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One of the easier methods for getting the cross-sectional 

area is to cut the object perpendicular to the axis of 

rotation.  Doing this the cross section will be either a solid 

disk if the object is solid (as our above example is) or a 

ring if we’ve hollowed out a portion of the solid (we will 

see this eventually). 

  

In the case that we get a solid disk the area is, 

A=(radius)
2
 

Where the radius will depend upon the function and the 

axis of rotation. 

  

In the case that we get a ring the area is, 

A=((outer radius)
2
-(inner radius)

2
) 

Where again both of the radii will depend on the functions 

given and the axis of rotation.  Note as well that in the 

case of a solid disk we can think of the inner radius as 

zero and we’ll arrive at the correct formula for a solid 

disk and so this is a much more general formula to use. 

  

Also, in both cases, whether the area is a function of x or 

a function of y will depend upon the axis of rotation as we 

will see. 

  

This method is often called the method of disks or the 

method of rings. 

 

Example 1:  Determine the volume of the solid obtained 

by rotating the region bounded by 

4,1,542  xxxxy  and the x-axis about the x-

axis. 

  

Solution: The first thing to do is get a sketch of the 

bounding region and the solid obtained by rotating the 

region abou x- axis. Here are both the sketches:   

 

 
 to get a cross section we cut the solid at any x.  Below are 

a couple of sketches showing a typical cross section.  The 

sketch on the right shows a cut away of the object with a 

typical cross section without the caps.  The sketch on the 

left shows just the curve we’re rotating as well as its 

mirror image along the bottom of the solid.   

 

 
In this case the radius is simply the distance from the x-

axis to the curve and this is nothing more than the 

function value at that particular x as shown above.  The 

cross-sectional area is then, 
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A(x) = (x
2
-4x+5)

2  
= (x

 4
-8 x

 3
+26 x

 2
-40 

x+25) 
Next we need to determine the limits of integration.  

Working from left to right the first cross section will 

occur at x=1 and the last cross section will occur at x=4 .  

These are the limits of integration.The volume of this 

solid is then,                   

984.48

)2540268(14.3

)(

234






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4) WORK: This is the final application of integral that 

we’ll be looking at in this course.  In this section we will 

be looking at the amount of work that is done by a force 

in moving an object. In a first course in Physics you 

typically look at the work that a constant force, F, does 

when moving an object over a distance of d.  In these 

cases the work is, 

   

                            W=Fd 

However, most forces are not constant and will depend 

upon where exactly the force is acting.  So, let’s suppose 

that the force at any x is given by F(x).  Then the work 

done by the force in moving an object from x=a to x=b is 

given by,         


b

a

dxxFW )(  

 Notice that if the force is constant we get the correct 

formula for a constant force. 

)( abF

FdxW

b

a



 
 

Where  b-a is simply the distance moved, or d. So, let’s 

take a look of a example of non-constant forces. 

   

CONCLUSION: 

 

We have seen that in situations where it is impossible to 

know the function governing some phenomenon exactly; 

it is still possible to derive a reasonable estimate for the 

integral of the function based on data points. The idea is 

to choose a model function going through the data points 

and integrate the model function. The definition of an 

integral as a limit of Reimann sums shows that if you 

chose enough data points, the integral of the model 

function converges to the integral of the unknown 

function; so theoretically, numerical integration is on 

solid ground. We have also seen that there are many 

practical factors that influence how well numerical 

integration works. Simple model functions may not 

emulate the behaviour of the unknown function well. 

Complicated model functions are hard to work with. 

Problems with the number of data points, or the way in 

which the data was collected can have a major impact, 

and while we have explored some simple ways of 

estimating how accurate a particular numerical integral 

will be, this can be quite complicated in general. 

Nonetheless, by using common sense, together with a 

solid grasp of what the integral means and how it is 

related to the geometry of the function being integrated, a 

creative scientist, mathematician or engineer can 

accomplish a great deal with numerical integration. 
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