

On potentially graphical sequences

Department of Mathematics
University of Kashmir Srinagar, 190006, India.

Abstract - A graphic sequence $\pi=(d_1,\ldots,d_n)$ is potentially $K_4-K_2\cup K_2$ -graphic if it has a realization containing an $K_4-K_2\cup K_2$ as a subgraph where K_4 is a wheel graph on four vertices and $K_2\cup K_2$ is a set of independent edges. In this paper, we find the smallest degree sum such that every n-term graphical sequence contains $K_4-K_2\cup K_2$ as a subgraph

Key words and Phrases: Simple graph, potentially graphical sequences

1 INTRODUCTION

Let G(V, E) be a simple graph (a graph without multiple edges and loops) with n vertices and m edges having vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. The set of all non-increasing non-negative integer sequences $\pi = (d_1, d_2, \dots, d_n)$ is denoted by NS_n . A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic sequences in NS_n is denoted by GS_n . There are several famous results, Havel and Hakimi [7, 8] and Erdös and Gallai [2] which give necessary and sufficient conditions for a sequence $\pi = (d_1, d_2, \dots, d_n)$ to be the degree sequence of a simple graph G. Another characterization of graphical sequences can be seen in Pirzada and Yin Jian Hu [15]. A graphical sequence π is potentially H-graphical if there is a realization of π containing H as a subgraph, while π is forcibly H graphical if every realization of π contains H as a subgraph. If π has a realization in which the r+1vertices of largest degree induce a clique, then π is said to be potentially A_{r+1} -graphic. We know that a graphic sequence π is potentially K_{k+1} -graphic if and only if π is potentially A_{k+1} -graphic [17]. The disjoint union of the graphs G_1 and G_2 is defined by $G_1 \bigcup G_2$. Let K_k and C_k respectively denote a complete graph on k vertices and a cycle on k vertices.

A sequence $\pi = (d_1, d_2, \dots, d_n)$ is said to be

potentially K_{r+1} -graphic if there is a realization G of π containing K_{r+1} as a subgraph. It is shown in [4] that if π is a graphic sequence with a realization G containing H as a subgraph, then there is a realization G of π containing H with the vertices of H having |V(H)| largest degree of π .

In order to prove our main results, the following notations, definitions and results are needed. Let G=(V(G),E(G)) be a simple graph with vertex set $V(G)=\{v_1,v_2,\cdots,v_n\}$. The degree of v_i is denoted by d_i for $1 \leq i \leq n$. Then $\pi=(d_1,d_2,\cdots,d_n)$ is the degree sequence of G, where d_1,d_2,\cdots,d_n may be not in increasing order. The degree sequence $\pi=(d_1,d_2,\cdots,d_n)$ is said to be potentially A_{r+1} -graphic if it has a realization H=(V(H),E(H)), where $V(H)=\{u_1,u_2,\cdots,u_n\}$ and the degree of u_i is d_i for $1 \leq i \leq n$, such that the subgraph induced by $\{u_1,u_2,\cdots,u_{r+1}\}$ is K_{r+1} . In order to prove our main results, we also need the following notations and results. Let $\pi=(d_1,d_2,\cdots,d_n) \in NS_n, 1 \leq k \leq n$. Let

$$\pi^{''} = (d_1 - 1, \dots, d_{k-1} - 1, \dots, d_k + 1 - 1, d_k + 2, \dots, d_n), \text{ if } d_k \ge k,$$

$$= (d_1 - 1, \dots, d_k - 1, \dots, d_k + 1, \dots, d_{k-1}, d_{k+1}, d_n), \text{ if } d_k < k.$$
Denote
$$\pi_k^{'} = (d_1^{i'}, d_2^{i'}, \dots, d_{n-1}^{i'}), 1 \le i' \le n, \text{ where}$$

 $d_1^{i'}, d_2^{i'}, \cdots, d_{n-1}^{i'}$ is a rearrangement of the n-1 terms of $\pi^{''}$. Then $\pi^{''}$ is called the residual sequence obtained by laying off d_k from π .

Definition 1.1. A Wheel graph W_n is a graph with n vertices $(n \ge 4)$ formed by connecting a single vertex to all vertices of an (n-1) cycle. A wheel graph on 4 and 5 vertices are shown in Figure 1 below

In 1960 Erdös and Gallai gave the following necessary and sufficient condition.

Figure 1

Theorem 1.1.(Erdös, Gallai [2]) Let $n \ge 1$. An even sequence $\pi = (d_1, ..., d_n)$ is graphical if and only if

$$\sum_{i=1}^{k} d_{i} \le k(k-1) + \sum_{i=k+1}^{n} \min(d_{i}, k)$$

is satisfied for each integer k, $1 \le k \le n$.

Theorem 1.2. [4] If $\pi = (d_1, d_2, \dots, d_n)$ is the graphic sequence with a realization G containing H as a subgraph, then there exists a realization G' of π containing H as a subgraph so that the vertices of H have the largest degrees of π .

2 r-GRAPHIC SEQUENCES

The following three results due to Chungphaisan [1] are generalizations from 1-graphs to b-graphs of three well-known results, one by Erdos and Gallai [2], one by Kleitman and Wang [11], one by Fulkerson, Hoffman and McAndrew [5].

Theorem 2.1.([1]) Let $\pi = (d_1, ..., d_n)$ be a nonincreasing sequence of non-negative integers, where the sum of the elements of π is even. Then π is b-graphic if and only if for each positive integer $t \le n$,

$$\sum_{i=1}^{t} d_i \le rt(t-1) + \sum_{i=t+1}^{n} \min(rt, d_i).$$

nonnegative integers with $d_1 \leq \sum_{i=2}^n \min(b,d_i)$. Define $\pi_k^{'} = (d_1^{'},\dots,d_{n-1}^{'})$ to be the nonincreasing rearrangement of the sequence obtained from $(d_1,\dots,d_{k-1},d_{k+1},\dots,d_n)$ reducing by 1 the remaining largest term that has not already

been reduced b times, and repeating the procedure d_{ν}

times. π_k is called the *residual sequence* obtained from π

by laying off d_{ν} .

Let $\pi = (d_1, ..., d_n)$ be a nonincreasing sequence of

Theorem 2.2.([11]) π is r-graphic if and only if π_k is r-graphic.

Theorem 2.3. ([1]) Let π be an r-graphic sequence, and let G and G' be realizations of π . Then there is a sequence of r-exchanges, E_1, \ldots, E_k such that the application of these b-exchanges to G in order will result in G'.

An extremal problem for 1-graphic sequences to be potentially K_l^1 -graphic was considered by Erdös, Jacobson and Lehel [3], and solved by Gould et al. [6] and Li et al. [14, 13]. Recently, Yin [18] generalized this extremal problem and the Erdös-Jacobson-Lehel conjecture from 1-graphs to b-graphs.

Theorem 2.4. (Yin [19]) Let $n \ge r + s$ and let $\pi = d_1, ..., d_n$ be a nonincreasing graphic sequence. If $d_{r+s} \ge r + s - 2$, then π is potentially $A_{r,s}$ -graphic.

In the same paper Yin published a Havel-Hakimi type algorithm constructing the corresponding $S_{r,s}$ -graph.

In 2014 Pirzada and Chat proved the following assertion.

Theorem 2.5.(Pirzada, Chat [16]) If G_1 is a realization of $\pi_1 = d_1^1, \ldots, d_m^1$, containing K_p as a subgraph and G_2 is a realization of $\pi_2 = d_1^2, \ldots, d_n^2$ containing K_q as a subgraph, then the degree sequence $\pi = d_1, \ldots, d_{m+n}$ of the join of G_1 and G_2 is K_{p+q} -graphic.

Problem 2.6. Let H be the graph and n be the

positive integer. Determine the smallest even integer $\sigma(H,n)$ such that every n -term graphic sequence contains H as a subgraph.

The purpose of this paper is to solve problem 6 by taking $H = W_4 - (K_2 \cup K_2)$ and we also obtain the graphic sequence of the graph when only edge size of the graph and degree of first vertex of the non-increasing sequence of integers is given.

In the following result, we find the smallest graphic sum such that every n-term graphic sequence contains $W_4 - (K_2 \cup K_2)$ as a subgraph.

3 MAIN RESULTS

We Prove the following main result.

Theorem 3.1. If π be the graphic sequence with $\sigma(\pi) \ge 3n-1$ if n is odd and $\sigma(\pi) \ge 3n-2$ if n is even, then π is potentially $W_4 - (K_2 \cup K_2)$ -graphic.

Proof. Let π be the graphic sequence, then there exists a graph G which realizes π . We have to show that if $\sigma(\pi) \geq 3n-1$ and $\sigma(\pi) \geq 3n-2$, then every n-term graphic sequence contains $W_4 - (K_2 \cup K_2)$ as a subgraph, where $K_2 \cup K_2$ is the matching in G. To prove the result we use induction on n and we start induction for $n \geq 4$. For n=4, then by the assumption we have $|E| \geq 5$, therefore in this case the realization G of π contains $W_4 - (K_2 \cup K_2)$ as a subgraph as illustrated in figure 1.

Figure 1

Clearly from figure 1, there are exactly two graphs with |G|=4 and $|E| \ge 5$ and both these graphs contains $W_4-(K_2\cup K_2)$ as a subgraph. Thus π is potentially $W_4-(K_2\cup K_2)$ -graphic. Now for n=5, therefore from

give assumption we have $|E| \ge 7$, then there are exactly four graphic sequences $(4,3^2,2^2),(4,3^3,1),(3^4,2)$ and $(4^2,2^3)$ with $\sigma(\pi)=14$ and each of these graphic sequences have a realization G containing $W_4-(K_2\cup K_2)$ as a subgraph as illustrated in figure 2.

All these graphs contains $W_4 - (K_2 \cup K_2)$ and the result is true in this case also. Now assume that the result is true for all graphic sequences of n-terms and we now consider the graphic sequences of n+1 terms. Now if the graphic sequence π contains a vertex of degree equal to 1, then remove it and adjust the new sequence π' . By induction realization G of $\pi^{'}$ must contain a $W_4-(K_2\cup K_2)$. We know that for $n \ge 6$ smallest degree sum such that every n term graphic sequence contains a clique on three vertices is 2n. Since $\sigma(\pi) = 16$ for n = 6 which is greater than the smallest degree sum such that every 6-term graphic sequence contains a clique on 3 vertices which can be obtained in a realization using the two vertices of highest degree. Let this complete graph graph on three vertices has vertices y_1, y_2 and y_3 and assume that these two vertices of highest degree in the graph are y_1 and y_2 . Thus y_1 and y_2 have at least one more adjacency in the graph say y_1 is adjacent to x and y_2 is adjacent to y as shown in figure 4.

Now we consider the following cases

Case I. If x = y, then G contains the subgraph

 $W_4 - (K_2 \cup K_2)$, therefore the result is true in this case. **Case II.** If $x \neq y$, we consider two subcases.

Subcase 1. Suppose x and y have common vertex w such that xw and $yw \in E(G)$. Then we see that wy_1 and xy_3 are not in realization G of π , since otherwise we get a realization G containing $W_4 - (K_2 \cup K_2)$. Then by EDT by removing the independent edges $K_2 \cup K_2$ (xw and y_1y_3) and inserts the independent edges $K_2 \cup K_2$ (wy_1 and xy_3) produces a realization G of π containing a $W_4 - (K_2 \cup K_2)$ on the vertex set $S = \{y_1, y_2, w, y\}$.

Subcase 2. Suppose that x and y have no common adjacency of a clique on three vertices. Suppose x is adjacent to x' and y is adjacent to y' such that $x' \neq y'$. Now suppose that $x'y' \notin E(G)$, then by EDT that removes the independent edges $K_2 \cup K_2(xx')$ and yy') and inserts the independent edges x'y' and xy produces a realization G of π containing $W_4 - (K_2 \cup K_2)$. These two subcases are illustrated in Figure 4 and 5 below.

Subcase 3. Now if $x,y' \in E(G)$, then again it is easy to see that the independent edges x_1y_1 and $xy_3 \notin E(G)$, since otherwise $W_4 - (K_2 \cup K_2)$ would exist. Therefore again by EDT that removes the independent edges y_1y_3 and xx' and inserts the independent edges y_1x' and xy_2 produces a realization G of π containing $W_4 - (K_2 \cup K_2)$. Thus in all cases $W_4 - (K_2 \cup K_2)$ was produced in some realization of π and therefore the graphic sequence π is potentially $W_4 - (K_2 \cup K_2)$ and hence the result is proved.

Example 3.2. Let $\pi_1 = (4,3^3,1)$ be the nonnegative sequence. Then clearly it is graphic with $\sigma(\pi) = 14$. Therefore by above theorem realization of π contains $H = W_4 - (K_2 \cup K_2)$ as a subgraph. Thus π_1 is potentially H-graphic.

Example 3.3. Let $\pi_2 = (3^2, 2^3)$ be the nonnegative sequence. Then clearly it is graphic with

 $\sigma(\pi)=12$. Therefore by above theorem every 5-term graphic sequence of π does not contains $H=W_4-(K_2\cup K_2)$ as a subgraph. Thus every 5-term graphic sequence of π_2 does not contain H as a subgraph.

REFERENCES

- [1] V. Chungphaisan, Conditions for a sequences to be r-graphic, Discrete Math, **7** (1974) 31–39.
- [2] P. Erdös, T. Gallai, Graphs with prescribed degrees (in Hungarian) Matemoutiki Lapor 11(1960) 264-274.
- [3] P. Erdös, M. S. Jacobson, J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, Graph Theory, Combinatorics and Applications, vol. 1, John Wiley and Sons, New York, 1991, 439–449.
- [4] R. J. Gould, M. S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in Combinatorics, Graph Theory and Algorithms, vol. 2, (Y. Alavi et al., eds.), New Issues Press, Kalamazoo MI, 1999, 451-460.
- [5] D. R. Fulkerson, A. J. Hoffman, M. H. McAndrew, Some properties of graphs with multiple edges, Canad. J. Math., 17 (1965) 166–177.
- [6] R. J. Gould, M. S. Jacobson, J. Lehel, Potentially G-graphical degree sequences, in: Y. Alavi (Ed.), *Combinatorics, Graph Theory and Algorithms*, vol. 1, New Issues Press, Kalamazoo, Michigan, 1999, 451–460.
- [7] S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, J. SIAM Appl. Math. **10** (1962) 496-506.
- [8] V. Havel, A Remark on the existance of finite graphs (Czech) Casopis Pest. Mat. **80** (1955) 477-480.
- [9] A. Ivanyi, Reconstruction of complete interval tournaments, Acta Univ. Sapientiae, Inform, 1 (2009) 71-88.
- [10] A. IvÃ;nyi, Reconstruction of complete interval tournaments II, Acta Univ. Sapientiae **2** (1) (2010) 47-71.
- [11] D. J. Kleitman, D. J. Wang, Algorithm for constructing graphs and digraphs with given valencies and factors,

Discrete Math, 6(1973)79-88.

- [12] V. B. Le, H. N. de Ridder, Probe split graphs, Discrete Math. Theor. Comput. Sci., 9(1), (2007) 207–238.
- [13] J. S. Li, Z. X. Song, R. Luo, The Erdos-Jacobson-Lehel conjecture on potentially p_k -graphic sequences is true, Sci.China Ser. A, 41 (1998) 510-520.
- [14] J. S. Li, Z. X. Song, An extremal problem on the potentially p_k -graphic sequence, Discrete Math., 212 (2000) 223-231.
- [15] S. Pirzada, and Yin Jian Hu, Degree sequences in graphs, J. Math. Study 39, 1(2006)25-31.
- [16] S. Pirzada and Bilal A Chat, Potentially graphic sequences of Split Graphs, Kragujevac J. Math 38, 1 (2014).
- [17] A. R. Rao, The clique number of a graph with a given degree sequence, Proc. Symposium on Graph Theory (ed. A. R. Rao), Macmillan and Co. India Ltd, I.S.I. Lecture Notes Series, 4 (1979) 251-267.
- [18] J. H. Yin, A generalization of a conjecture due to Erdos, Jacobson and Lehel, Discrete Math., 309 (2009) 2579–2583.
- [19] J. H. Yin, A Havel-Hakimi type procedure and a sufficient condition for a sequence to be potentially S_r graphic, Czechoslovak Math. J,62 (3) (2012) 863-867.

