
ISSN (Online) 2456 -1304 

  

International Journal of Science, Engineering and Management (IJSEM) 

Vol 3, Issue 2, February 2018 

 

 

 All Rights Reserved © 2018 IJSEM                87 

 

Topic-based Modeling using Query Based 

Approach with Independent XML Structure Data 
 

[1]
 Heena Malani, 

[2]
 S. R. Ghungrad 

[1][2]
 Department of Computer Engineering, MSS College of Engineering Jalna, Aurangabad,[2] Professor 

 

Abstract: The rapid adoption of XML as a standard for representation and exchange of information is an enormous amount of 

XML data retention and archiving on the Internet or incorporate data repositories. This will lead to the development of online 

decision support systems where users and analysts can interact large XML datasets through open query interfaces (such as XQuery 

or XSLT). Estimated responses are effective mechanisms to reduce response time and provide feedback to users. This approach has 

been successfully used in relational and more confident systems in the XML world. Complex evaluations of structured data are 

more expensive. Ranking and the most relevant search results became the most popular paradigm for processing XML messages. 

However, existing proposals did not adequately consider the structure, and therefore were not rational. Link  

 structure to content to answer a relaxing question. To solve this problem, we offer a sophisticated query framework to support an 

approximate query of XML data. Responses under this framework do not need to be strictly adhered to. It may use a view that was 

subtracted from the original query. So we've developed a new top-of-the-line search method that can generate the most likely 

response in a ranking order relative to rank. We work with a comprehensive set of experiments to demonstrate the effectiveness of 

our approach in terms of precision and recall. 

 

Keywords: - XML, approximate queries, query relaxations, top-k. 

 
I. INTRODUCTION 

In the last few years, XML, which originally offered to 

represent, exchange, and publish information on the web, has 

become widely used in many applications: as a solution for 

disseminating inherited data in order to retain information 

that can be Show with no other original information. To 

ensure interoperability between applications to integrate web 

services to retrieve web and other data, these applications 

create strong demand for both repositories, XML document 

repositories, and XML query languages. It is designed for 

data retrieval and restructuring of XML data. But all 

languages that actually apply for XML data [BC00] only 

provide answers to search queries. When used with large 

XML or warehouse repositories, accurate queries may take 

time to respond. In order to overcome this problem in 

traditional relational warehouses, we will support an 

approximate query based on concise statistical data generated 

using a histogram or sampling technique. We believe that the 

current trend of XML claims for extending the approach is 

also a very big question of the XML data set. The basic idea 

for the estimated answer is to store the pre-calculated 

summary of the XML warehouse, also known as 

Comprehensive data collection and retrieval of those data 

represent the original database, saving time and IT costs. The 

basic idea for an estimated answer is to store a set of 

predefined XML bundles, also known as bundles. (To gather 

concise information), and to find out these data instead of the 

original database, saving time and money on the computer. 

Users must submit a request to the system, which should use 

the information instead of the original information to respond 

to the query. The result should come in a very short time at 

the expense of precision loss. The ideal way to answer XML 

queries should be to benefit from database query style and IR 

style queries, since the IR query improves query value by 

allowing for higher query volumes of the query. Text content 

in IR style search by specifying the context to be searched[6]. 

 

The contributions of this document are as follows: 

1) We offer a way to relax queries that incorporate structure 

and content, as well as factors that users are more concerned 

about, to support their estimated XML queries, especially 

how our users assume that they are concerned about Analyze 

the original query of the user to facilitate the relaxation of the 

query. In addition, our approach is different from the 

relaxation sequence, rather than equally important for each 

node to relax. In particular, the first relaxed structure to be 

considered is what has the highest similarity coefficients with 

the original query and the first node to be released as the least 

important node. 

 

2) We define a similar assessment by analyzing the inherent 

meaning presented in the XML source. To solve our problem, 

we divide the node into two groups: the attribute node and 

the numerical attribute node, and design the corresponding 

method. Similarly, in evaluating relationships, the similarity 

of the attribute nodes and the nodal attributes. We also 

designed a non-circular indexed (CDAG) chart to create and 

structure relaxation and develop effective evaluation 

coefficients for similar structural evaluations. 



 

 

   

ISSN (Online) 2456 -1304 

  

International Journal of Science, Engineering and Management (IJSEM) 

Vol 3, Issue 2, February 2018 

 

 

 All Rights Reserved © 2018 IJSEM                 88 

 

 

 

Based on the similarity assessment offered and the priority, 

we will relax the query with an automated recovery method 

that can generate the most effective response possible. 

 

II. RELATED WORK 

 

Extensive searches were carried out on structured queries as 

well as text search on XML data and graph data [4]].  

Structural Join [4] decomposes the tree model queries into a 

set of binary components, and then the matches of each 

individual component are assembled to obtain the final 

results. Holistic Join [12] adopts a technique of a linked stack 

string to compactly represent partial results on the query 

paths, and these paths can be compounded to get the final 

matches for the tree query d 'Entrance. By introducing a 

fuzzy marking scheme, work [15] introduced a holistic 

joining algorithm to match twigs involving OR / NOT 

predicates. Based on the fuzzy label flows, the problem of the 

ordered tree pattern Concordance to fuzzy XML data has 

been set in the following work [12]. A common characteristic 

of these above approaches is that they deal exclusively with 

tree model queries with precise query conditions. They do 

not process an approximate query when users can not specify 

their query conditions accurately.  A system called XRANK, 

which is designed for keyword searches in XML documents, 

is used in [10]. XRANK has a ranking mechanism and 

returns documents as answers. Other search engines based on 

keywords for XML, called XSEarch, are shown in [16]. In 

XSEarch, query responses are categorized using extended 

retrieval techniques and built in the same order in the 

ranking. However, as mentioned above, structured query 

queries are rarely found in real-world applications, as these 

methods rely on schema information to avoid unintended 

consequences. Trust or may yield unsatisfactory results. 

Recent efforts have included the ability to manage database 

structured data with the ability to find effective keywords for 

querying. To provide structured XML query responses 

effectively, unstructured query mechanisms [11], keyword 

query mechanisms [15], and query relaxation mechanisms 

[14] In [10], Brodianskiy et al. Propose a framework for 

deriving self-correcting queries on XML. Within their 

framework, satisfactory similar requests are generated when 

the given request is unsatisfactory. The user will then choose 

a satisfiable questioning of interest, and receiving exactly 

satisfactory answers to this request. In [3], Mandreoli et al. 

Present a model that combines structures and vocabularies to 

support approximate queries. In [13], Liu et al. Provide a 

content-oriented approach to XML content and structure 

requests. They first decompose a query of content and 

structure into multiple query fragments, and get the 

intermediate results, and then combine and rank the results 

according to the relevance of the original query. 

 

In [11], Buche et al. Developed techniques for fuzzy marking 

and XML queries in [13]. Based on the WordNet dictionary 

and fuzzy set theory [1, 2, 9], Campi et al. The Keif query 

constraint in XML [18], Damiani et al., Introduces a flexible 

query model through contextual crawl options to support an 

approximate XML query [17] based on semantics. Of the 

Cohen and Shil horizon. oach presents a query language for 

XML that includes both value and structure requirements. 

In Termehchy and Winslett, they provide a way of ranking 

for XML keyword queries, which categorize candidate 

responses according to the statistical criteria of their 

correspondence. Their approach can enable users to take 

advantage of XQuery to process tree queries directly, without 

the need for knowledge of the checkbook. 

 

In [18], Wang and his team propose ways to add value to a 

given keyword by introducing vague or ambiguous keywords 

or keywords that have a semantic relationship in the 

vocabulary database to improve their performance. Inquiries 

only. However, using the terminology database alone can not 

find similar substitutes that may be useful to users, so their 

approach does not solve the problem of finding the most 

relevant answers. 

 

In [15], Yan et al. Indicate a preference ranking pattern to 

handle the approximate search queries in XML. Their 

approach is based on user-defined attention scores to 

generate a top response. Add a load to the user's search 

query. Unable to discover possible responses that users may 

be interested in because there is no similarity assessment 

designed to derive the inherent meaning presented in the 

XML source. 

 

In [21], based on flexible semi-flexible matching and 

matching, kanzaet al offers two definitions adapted to the 

ontological critique of semi-structured data. Structuring and 

querying text in response to an estimated query has generated 

considerable interest in [6], Amer-Yahia et al. Launch a 

framework called FleXPath, which combines structure and 

text. 

 

Compared with the previous proposal, our approach is 

different from the above. To solve our problem, we have 

developed a method of relaxing search terms, including 

structure and content. It also includes factors that the user is 

concerned about. (Inferred from the original query analysis 

by identifying the relaxation sequence and structure), 

answering the XML query. In addition, the previous work 



 

 

   

ISSN (Online) 2456 -1304 

  

International Journal of Science, Engineering and Management (IJSEM) 

Vol 3, Issue 2, February 2018 

 

 

 All Rights Reserved © 2018 IJSEM                 89 

 

 

often emphasized the importance of each node to be relaxed. 

However, our method of determining the first relaxation 

structure is the structure with the highest tree similarity 

coefficient to the original query, and the first node to be the 

least significant node. The first innovation of our solution is 

to introduce factors that the user is more concerned with and 

to identify the sequence of rest. Another innovation is the 

similarity assessment designed to find potential responses 

that users may be interested in that have been refined by 

analytics. The inherent meaning presented in the XML 

source. In our solution, we group the nodes in two groups: 

the attribute node and the attribute node. We then designed a 

way to evaluate the similarity of cluster-based attributes by 

estimating the percentage of ANV pairs associated with the 

tree's meaning contacts, and developing a similar approach 

for evaluating the similarity. The node of the numerical 

attribute is Evaluation function 

 

III. DATA AND QUERY MODEL 

 

A. Data Models We consider the data model for the XML 

data that is displayed as data sets. Basically, a data structure 

is part of the real world via an entity. (Usually a set of 

attributes) values and relationships. A simple XML snippet 

with different car collections is shown in Figure 1. 

 

XML Data Model 

XML data format We follow the XML document in the form 

of a large T (V, E) tree, labeled by each node. The node u ∈ 

V corresponds to the XML element and looks like a unique 

object identifier (oid). ) And the label (or tag) that comes 

from the literal strings of the literal, which will compile the 

definition of the edge element (ei, ej). E is used to capture the 

confinement of (sub) element ej under ei in the base. 

Information (we use the label (ei), child (ei) to Defines labels 

and subset nodes for element nodes ei ∈ V). For example, 

FIG. 1 shows an example of an XML data structure 

containing bibliographic data. The document contains 

elements of the author, each with several titles and sub-

elements of paper and books. Each article has one year's 

published title and at least one search term, while a book 

recently gave the title. Note that the element node in the 

structure is named with the first character of the element 

label plus the unique identifier. Elements of Le in T are 

generally valued. But our main goal in this task is to capture 

and look up the tag structure of the XML data structure, 

rather than spreading the relevant values. 

The XML query templates we focus on are XML branch 

queries, which represent the basic blocks of declarative 

language declarations for XML (including XQuery [4] and 

XSLT [7] standards). In short, branch search describes the 

path. The complexity in the XML data structure and the 

return of structured XML results are structures that are 

generated through the interpreted values. (That is, the 

integration of the structure) of the multiple path 

representation (shown in XPath [8]). 

 

We create a query Q as a Tree. The query is labeled by the 

TQ node, where (1) each node of TQ has a qi label in Q 

(where q0 is the different root node to the root of the XML 

document) and ( qi, qj) of TQ has a description of the XPath 

expression path (qi, qj) describing the constraints of the 

specific structure specified in Q between the data elements 

associated with qi and qj between 'Evaluation.'  

 
Figure 1 XML Document 

Proposed System 

 

 
Figure2 System Architecture 

There are two users using the system 

1) Data user 

2) Master Admin 

 

The user's XML query uses knitting and wording techniques 

to identify keywords and attributes. The DOM analyzer will 

search for attributes and keywords from the XML file. To 

answer the XML query, calculate how often the frequency 

(TF) and inverse document frequency (xx) of the xml file are 



 

 

   

ISSN (Online) 2456 -1304 

  

International Journal of Science, Engineering and Management (IJSEM) 

Vol 3, Issue 2, February 2018 

 

 

 All Rights Reserved © 2018 IJSEM                 90 

 

 

extracted to the user. Sort the weighted frequencies (TFs) and 

inverse frequencies (IDFs) according to the most popular 

search algorithms. The retrieval system uses a variety of 

ways to rank queries. Users are more concerned about the 

most important answer, such as the answer to the top-k 

question in the answering area is very large. Different Apps 

Need Effective Support for Top Queries. Administrators 

write to insert, update, and delete data from the repository. 

This information is used by the DOM parser to retrieve the 

output. 

 

3.1 Top-k query 

The retrieval system uses various methods to rank queries. 

Users are more concerned about the most important thing that 

is responding to popular queries in the vast answering area. 

Different emerging applications require powerful support for 

the top queries. For example, in the context of web 

performance and meta search engine performance, which are 

ranked by different search engines, are related to how 

effective rankings are. Similar applications exist in the view 

of data retrieval and data mining. Most of these applications 

compute queries related to joins and integration of multiple 

inputs to get maximum results. The aim of popular search is 

to retrieve the best answer from a large collection of notes. 

Using the Top-k algorithm, we find the most accurate records 

from the recordsets that match the keywords that are filtered 

and sorted by their scores. An XML tree is created with each 

result set, which is called a tree. The Steiner Tree Steiner 

created is a list of all the records sorted by their score, 

starting with the nearest result. The most popular search 

algorithm uses score documents with keywords. Here, use 

this algorithm to score "Tuple Units." A unit is a set of highly 

relevant sets that contain search terms. Using these tuples, we 

create a set of tuples. Up when two tuples are directly related 

to each other. The Top-K questionnaire score was based on 

two scoring methods: direct scoring and indirect scoring. TF-

IDF stands for "Frequency Frequency, Inverse Document 

Frequency". The TF-IDE provides a way to rate the 

importance of words (or "terms") in a tuple, depending on the 

tuple. They repeatedly appear in the document several times. 

 

 

Terms are called according to the following criteria: 

1) If the word appears frequently in the tuples, this word is 

called significant and has a high score. 

2) If a word appears in several sentences it is called a unique 

identifier and has a low rating. 

 

So common terms like "the" and "for", which appear in many 

tuples, will be scaled down. Frequent appearances in one set 

are resized. 

Top-K query processing algorithms work with age, weight, 

and high frequency word frequency and ignore low 

frequency words. This technique is called TF-IDF 

(Frequency Frequency - Inverse document frequency). TF -

IDF consists of two words: First, the frequency (TF) is 

calculated, the number of times the word appears in the 

totem, divided by the total number of words in that word. The 

second word is Inverse Document Frequency (IDF). 

Logarithm of the number of tuples In the corpus divided by 

the number of tuples where specific words appear. 

 

IDF(t) = log(Total number of tuple-rows / Number of tuple-

rows with term t in it). 

Consider examples in Figure 2 of XML describing vehicle 

data used in various forms: A car in the form of a car B, car 

in the place of sale, and C consists of cars arranged according 

to model and year. Take a look at Q1, a simple question. Ask 

for information (Usedcar) when considering certain 

conditions (do 'Ford' and prices do not reach "9000"). To 

create an XQuery to display this simple query, the user faces 

a challenge. That element is the main component of the used 

car, but the price may be either children or grandchildren. In 

addition, the custom definition of the XML data source can 

be very problematic for using XQuery. 

 

3.2 Query Generation  

 
Figure 3 XML Data 

 

3.3 Perform Query Relaxation 

Query relaxation allows the system to narrow down query 

queries to meet user needs. Traditionally, user-submitted 

search queries are resolved in different ways and in different 

ways.  Obviously, the estimated search can change the format 

from one query to another, and the change among them is 

based on two views: relaxation, structure and content 

relaxation. Let Q be a query that states if Q 'has a Q', which is 

due to a decrease in search constraints using query relaxation 

or similar content substitution, we will say that Q and Q 'are 

approximate queries and matches.  

 



 

 

   

ISSN (Online) 2456 -1304 

  

International Journal of Science, Engineering and Management (IJSEM) 

Vol 3, Issue 2, February 2018 

 

 

 All Rights Reserved © 2018 IJSEM                 91 

 

 

3.4 Similarity Relations and Assessment on Contents 

In order to distinguish the different structural relaxation 

responses from the original questionnaire, we propose a 

similar relationship assessment approach to find the ranking 

factors (structures) used to find answers to the Find Top 

Answers. For example, consider XML data, assuming that 

users submit simple queries to retrieve nested used car data 

within the car. The central node in the path from cars to used 

cars usually are not of major concern the middle of the user, 

like the mid-nodes version and the year.  

 

The SimTree coefficient tree is a ranking factor used in 

ordering solutions to find the top-k solution on a structure to 

optimize online processing. Calculating the coefficient, the 

similarity between tree-like queries can be achieved in during 

offline processing. 

 

Algorithm for Value Partioning 

Input: Attributes, Ai numbers, All values of Ai, and 
Partition number n 
Output: set of maximum limits of each partition s 
a) min = getMinValue (val) // Get the smallest value 

 
c) total = getSize (val) // get 'number 
d) avg = total / n 
e) low = min up = max // set lower limit and upper limit 

 

andreturn 
Number of results 

 
i) add (up, s) // increase in set s 
j) low = up, up = max 

 
l) while 
m) return s 
 
The obvious measure for distance on tree nodes could be a 
path metric [6], i.e. length of the shortest path between 
them, the similarity measure that is based on path metric 
then could be expressed as 
 

 
Procedure  
Build Tree (T)  
Input: XML Document T.  
Output: Count-Stable synopsis S of T.  
begin  

1. H := φ; S := φ  
2. for each element e ∈ T in post-order do  
3. C := ,(ui, ci) : ui is a node in S and |children(e) ∩ 
extent(ui)| = ci > 0}  
4. if (H*label(e), C+ = φ) then  
5. Add node u to S with label(u) = label(e)  
6. H[label(e), C] := u  
7. for (ui, ci) ∈ C do add edge u ci −→ ui to S  
8. endif  
9. u := H[label(e), C]; extent(u) := extent(u) ∪ {e}  
10. end for  
end 
 

 

Experimental Setup 

To provide a thorough assessment of our approach in terms 

of impact on top search query processing, we conducted our 

experiments on synthetic synthesized XML datasets and 

collected data on second hand cars. Crawl from 

autos.yahoo.com In order to provide relaxation, the query is 

created using a different DTD. For our evaluation, the 

generated document contains information that represents the 

node, the entity, the warranty, and the description as entity 

nodes, and Make a model year, price, position, length, and 

color as the attribute nodes, which in year, place, and color 

format. The attribute and price attribute and the mileage 

attribute are considered as nodes. We then tested differently 

used car data sets, expressed as AD1, AD2, and AD3 (the 

default data set is AD2) by compiling documents in terms of 

the number of nodes between 150,000 and 350,000. Used 

ED1 vehicle, which contains data about 2,000,000 nodes, 

will collect data from www.edmunds.com An entity node is 

an entity node. Options and descriptions are the connection 

nodes. The generation, year, price, distance, location, and 

color attribute are the nodes. The place, year, and color 

format is the attribute node, and the cost and distance are the 

numerical attributes nodes. 

To showcase our improvised work, we have selected queries 

to display the query relaxation structure, which is possible in 

real situations. We used JAVA ranking and query methods, 

and tested on a 280GHz I5 processor and 8GB RAM running 

on Windows 7. 

 

Key index parameters for results 

To retrieve data with a binary precision classification. (Called 

positive predictive value) is the portion of the instance that 

retrieves the relevant data while it is being restored. (Also 

known as sensitivity) is the portion of the associated instance 

that is restored. Accuracy and recall are based on 

understanding and measuring relevancy. 



 

 

   

ISSN (Online) 2456 -1304 

  

International Journal of Science, Engineering and Management (IJSEM) 

Vol 3, Issue 2, February 2018 

 

 

 All Rights Reserved © 2018 IJSEM                 92 

 

 

In simple terms, high accuracy means that the algorithm 

yields results that are associated with more irrelevant results, 

while higher recall means that the algorithm yields the most 

relevant results. 

Table 1.0 Precision, Recall, F measure Calculations 
Precision Recall F Measure 

  2*P*R/(P+R) 

Table 2.0 Confusion Matrix 

Confusion 

Matrix 

Predicted 

True 

Predicted 

False 

Actual True 7 17 

Actual False 19 2 

Table 3.0 Tabular Top-K Results 
Top K Count Accuracy Precision Recall F measure 

5 83.00 % 82.00 % 83.00 % 89.00% 

10 85.00% 85.12% 85.00% 88.00% 

15 85.80% 91.90% 91.39% 90.36% 

 

 
Figure 4 Query Approximation 

 
Figure 5 Graphical Results 

Based on the results above, we will summarize the following 

two points. First, the value of the similarity estimation 

presented in the XML data source should be set. Use d to 

evaluate the XML query, as it can provide effective support 

to find potential answers. Second, guessing about the factors 

that users are more concerned about is a key source for 

finding the most relevant answers when answering the XML 

queries. 

 

IV. CONCLUSION 

 

In this article, we present the concept and architecture of a 

system that collects data online on XML data. This system 

has the ability to provide quick feedback on the collection 

request by approaching and refining the final response 

throughout the process. Query processing It also provides a 

precise guarantee by attaching the weight data to the 

estimate. We've introduced a new query processing method 

that breaks out query patterns into search query patterns. 

Powerful search query processing is performed by the new 

service provider to select and join a pattern route along with 

the appropriate index structure. In order to obtain accurate 

estimates, we have modified the principle of DOM 

segmentation in XML query processing. During in-depth 

evaluation, we have shown that our systems refer to explicit 

assumptions in response to Finally, before the original system 

can be produced. In addition, good estimation can be 

obtained quickly for queries that do not have branch nodes. 

We have tried to improve our relaxed approach and ranking 

to become a friendly improvement guide in a dynamic 

environment. In future we also plan to improve our approach 

by incorporating emerging semantic technologies to address 

estimated queries with unstructured data structures and 

associated data. 

  

REFERENCES 

 

[1] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. 

Naughton. “Estimating the Selectivity of XML Path 

Expressions for Internet Scale Applications”. In Proceedings 

of the 27th Intl. Conf. on Very Large Data Bases, 2001. 

 

[2] P. Buneman, M. Grohe, and C. Koch. “Path Queries on 

Compressed XML”. In Proceedings of the 29th Intl. Conf. on 

Very Large Data Bases, 2003.  

 

[3] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi, 

and Kyuseok Shim. “Approximate Query Processing Using 

Wavelets”. In Proceedings of the 26th Intl. Conf. on Very 

Large Data Bases, 2000.  



 

 

   

ISSN (Online) 2456 -1304 

  

International Journal of Science, Engineering and Management (IJSEM) 

Vol 3, Issue 2, February 2018 

 

 

 All Rights Reserved © 2018 IJSEM                 93 

 

 

[4] Don Chamberlin, James Clark, Daniela Florescu, 

Jonathan Robie, Jer´ ome Sim ˆ eon, and Mugur Stefanescu. 

“XQuery 1.0: An XML ´ Query Language”. W3C Working 

Draft, 2001. 

 

 [5] Zhimin Chen, H.V. Jagadish, Laks V.S. Laksmanan, and 

Stelios Paparizos. ”From Tree Patterns to Generalized Tree 

Patterns: On Efficient Eavluation of XQuery”. In 

Proceedings of the 29th Intl. Conf. on Very Large Data 

Bases, 2003.  

[6] Zhiyuan Chen, H. V. Jagadish, Flip Korn, Nick Koudas, 

S. Muthukrishnan, Raymond Ng, and Divesh Srivastava. 

“Counting Twig Matches in a Tree”. In Proceedings of the 

Seventeenth Intl. Conf. on Data Engineering, 2001.  

 

[7] James Clark. “XSL Transformations (XSLT), Version 

1.0”. W3C Recommendation, November 1999. 

 [8] James Clark and Steve DeRose. “XML Path Language 

(XPath), Version 1.0”. W3C Recommendation, November 

1999.  

 

[9] Juliana Freire, Jayant R. Haritsa, Maya Ramanath, Prasan 

Roy, and J´er´ome Sim´eon. ”StatiX: Making XML Count”. 

In Proceedings of the 2002 ACM SIGMOD Intl. Conf. on 

Management of Data, 2002.  

 

[10] Yannis E. Ioannidis and Viswanath Poosala. 

“Histogram-Based Approximation of Set-Valued Query 

Answers”. In Proceedings of the 25th Intl. Conf. on Very 

Large Data Bases, Edinburgh, Scotland, September 1999.  

 

[11] Raghav Kaushik, Pradeep Shenoy, Phillip Bohannon, 

and Ehud Gudes. “Exploiting Local Similarity for Efficient 

Indexing of Paths in Graph Structured Data”. In Proceedings 

of the Eighteenth Intl. Conf. on Data Engineering, 2002.  

 

[12] L. Lim, M. Wang, S. Padmanabhan, J.S. Vitter, and R. 

Parr. XPathLearner: An On-Line Self-Tuning Markov 

Histogram for XML Path Selectivity Estimation. In 

Proceedings of the 28th Intl. Conf. on Very Large Data 

Bases, 2002.  

 

[13] Jason McHugh and Jennifer Widom. “Query 

Optimization for XML”. In Proceedings of the 25th Intl. 

Conf. on Very Large Data Bases, 1999.  

 

[14] Tova Milo and Dan Suciu. “Index structures for Path 

Expressions”. In Proceedings of the Seventh Intl. Conf. on 

Database Theory (ICDT’99), Jerusalem, Israel, January 1999.  

 

[15] N. Polyzotis and M. Garofalakis. ”Statistical Synopses 

for Graph Structured XML Databases”. In Proceedings of the 

2002 ACM SIGMOD Intl. Conf. on Management of Data, 

2002.  

 

[16] N. Polyzotis and M. Garofalakis. ”Structure and Value 

Synopses for XML Data Graphs”. In Proceedings of the 28th 

Intl. Conf. on Very Large Data Bases, 2002.  

 

[17] Neoklis Polyzotis, Minos Garofalakis, and Yannis 

Ioannidis. Approximate XML Query Answers. 2004.  

 

[18] Neoklis Polyzotis, Minos Garofalakis, and Yannis 

Ioannidis. “Selectivity Estimation for XML Twigs”. In 

Proceedings of the Twentieth Intl. Conf. on Data 

Engineering, 2004.  

 

[19] C. M. Procopiuc. Geometric Techniques for Clustering: 

Theory and Practice. PhD thesis, Duke Univ., 2001. [20] D. 

Sasha and K. Zhang. Fast algorithms for the unit cost editing 

distance between trees. Jnl. of Algorithms, 11, 1990.  

 

[20] Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu 

Yu. Containment join size estimation: Models and methods. 

In Proceedings of the 2003 ACM SIGMOD Intl. Conf. on 

Management of Data, 2003.  

 

[21] Yuqing Wu, Jignesh M. Patel, and H.V. Jagadish. 

”Estimating Answer Sizes for XML Queries”. In Proceedings 

of the 8th Intl. Conf. on Extending Database Technology, 

2002. 

 

 


