
ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 2, February 2018

 All Rights Reserved © 2018 IJSEM 156

An Intelligent Crawler

[1]
 Mrugnayani Sharma,

[2]
 Padmapani P. Tribhuvan

[1]
 PG Student,

[2]
 Assistant Professor Department of Computer Science and Engineering

[1][2]
 Deogiri Institute of Engineering and Management,Studies,(DIEMS), Aurangabad, India

Abstract: A web crawler is a software program or programmed script that browses the world extensive web in a systematic,

automated manner. Web crawler peregrinates from web page to page via the making use of the graphical structure of the internet

pages. Such programs are additionally kenned as robots, spiders, and worms. In this system explained further, Data mining

algorithms were used to introduce intelligence into the crawler. A statistical analysis of the performance of intelligent crawler is

presented in this work. While introducing crawler intelligence, data mining algorithm plays an important role. The main objective

is to develop an intelligent crawler to serve the purpose of web-indexing which helps in gathering relevant information from over

the Internet with the help of search engines. The proposed intelligent crawler must perform crawling in minimum time with a

maximum number of results.

Keywords: - Crawler, web indexing, statistical analysis.

I. INTRODUCTION

Over the past decade, the web has grown exponentially,

resulting in the prelude of the massive amount of data in the

virtual world at every instant. Consequently, the conventional

crawling strategy is eventually becoming inefficient in

collecting and indexing web data. Thus intelligent crawlers

must be developed and used to outperform the ever increasing

Internet. The crawler is a multi-threaded bot that runs

concurrently to serve the purpose of web-indexing which

helps in gathering relevant information from over the Internet.

This index is utilized by search engines, digital libraries, p2p

communication, competitive perspicacity and many other

industries. We are interested in introducing intelligent crawler

which will perform crawling efficiently. Here the crawler is

selective about the pages fetched and the links it will follow.

This selectivity is based on the interest of the topic of the user

thus at each step the crawler has to make a decision whether

the next link will help to gather the content of interest. Other

factors like a particular topic, the information it had already

gathered also affect the efficiency and performance of the

crawler [1]. While introducing perspicacity, two major

approaches dominate the decisions made by the crawler. The

first approach decides its crawling strategy by probing for the

next best link amongst all links it can peregrinate whereas the

second approach computes the benefit of peregrinating to all

links and ranks them, which is utilized to decide the next link.

The main objective is to develop perspicacity in crawler to

accommodate the purport of web-indexing which avails in

amassing pertinent information from over the Internet with the

avail of search engines. The proposed perspicacious crawler

must perform crawling in minimum time with a maximum

number of results. As web crawler browses the World Wide

Web in a methodical, automated manner, an astute web

crawling strategy is to be implemented for boosting up the

performance of crawling. The keenly intellective crawler must

perform crawling in minimum time with maximum number of

URLs crawled as a result [1, 2].

II. LITERATURE SURVEY

TYPES OF CRAWLERS

A. Parallel Crawlers

As the web grows in size, it becomes quite difficult or almost

impossible to crawl the whole web by a single instance of a

crawler. Therefore multiple processes are executed in parallel

by search engines to cover the whole WWW. This type of

crawler is referred to as a parallel crawler [3]. It consists of

multiple crawling processes each of which performs the basic

task of a single process crawler. The web pages are

downloaded from the web and are stored locally. Afterwards,

the URLs are extracted and their links are then followed.

B. Focused Crawlers / Topical crawlers/ Topic driven

crawlers

A focused crawler [3] has three main components a classifier

that takes decisions on the relevancy of a page, a distiller

decides the visit priorities and a crawler which downloads

Webpages and is instructed by classifier and distiller module.

C. Incremental Web Crawler

The incremental crawler [4,5] continuously crawls the web,

revisiting pages periodically. During its continuous crawl, it

may also purge some pages in the local collection, in order to

make space for newly crawled pages. The crawler has

following two goals:

• To keep the local collection fresh

• To improve quality of the local collection

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 2, February 2018

 All Rights Reserved © 2018 IJSEM 157

D. Hidden Web Crawler

Web crawlers generally crawl the web’s dense tree structure

called the publicly index able Web, i.e., the set of web pages

reachable purely by following hypertext links. The surface

web crawlers ignore search forms and pages that require

authorization or prior registration. In particular, they ignore

the huge amount of high-quality content “hidden” behind the

search for. The Hidden web crawler [3, 4], called HiWE runs

in a sequence of steps.

III DEEP WEB CRAWLER’S FRAMEWORK [6]

The fundamental activities of a profound web crawler are like

those of other conventional crawlers [6, 7].In Figure 1 the

flowchart demonstrates the normal crawler circle, comprising

of URL choice, page recovery, and page preparing to extricate

joins. Note that customary crawlers don't recognize pages with

and without shapes. The deep web crawler’s execution

sequence contains additional steps for pages on which forms

are detected. Specifically, deep web crawler performs the

following sequence of actions for each form on a page:

Step 1 Parse and process the form to build an internal

representation, based on the model outlined in Section2.

(Form Analysis)

Step 2 Generate the best (untried) value assignment and

submit a completed form using that assignment.(Value

assignment and submission)

Step 3 Analyze the response page to check if the submission

yielded valid search results or if there were no matches. This

feedback could be used to tune the value assignments in step

2.(Response Analysis)

Step 4 If the response page contains hypertext links, these are

followed immediately (except for links that have already been

visited or added to the queue) and recursively, to some pre-

specified depth. Note that we could as well have added the

links in the response page to the URL queue. However, for

ease of implementation, in deep web crawler, we chose

tonavigate the response pages immediately and that too, only

up to a depth of 1.(Response Navigation)Steps 2, 3, and 4 are

executed repeatedly, using different value assignments during

each iteration. The sequence of value assignments is generated

using the model.

Figure 1: Deep Web Crawler Loop

The flowchart in fig. 1 illustrates the complete architecture of

the deep web crawler. It includes six basic functional modules

and two internal crawler data structures. The basic crawler

data structure is the URL List. It contains all the URLs that the

crawler has discovered so far. When starting up the crawler,

the URL List is initialized to a seed set of URLs.

IV.FUNCTIONS OF A WEB CRAWLER

The web searching process has two main components: offline

and online [8]. The offline part is periodically performed by

the search engine and it is used for building a collection of

pages that will be later converted into a search index. The

online part is executed each time an interrogation is performed

by user. It uses the index for selecting documents that will

later be sorted depending on estimation on their relevance with

regard to the user’s requirements. A schematic representation

of this process is shown in figure 2.As web pages have

different formats, the first stage for indexing web pages is

represented by the extraction of a set of keywords.

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 2, February 2018

 All Rights Reserved © 2018 IJSEM 158

Figure 2: General structure of a web searching process

V.ARCHITECTURE OF SMART CRAWLER FOR

DEEP WEB INTERFACES

Smart Crawler consists of two main stages First is Site

Locating and Second is In-site exploring [10]. The figure

below shows the architecture of the proposed system.

Stage 1: Site locating– In Site locating stage the smart crawler

performs the operation to find out the relevant sites related to

the fired query. It has a number of steps involved to give the

final result of this stage.

1) Seed Sites: It is the initial stage of the architecture. Here,

seed sites are the candidate sites which are given to start

crawling. It begins with the following URL of the query and

explores other pages and other domains.

Figure 3: Architecture of smart crawler for deep web

interfaces

2) Reverse searching: Pages with high rank and links to many

other pages is called as a center page of the site. Some

threshold is defined for seed sites, if a number of visited sited

is less than the threshold then Reverse Searching is performed

to know the center pages of the known deep web sites. Feed

these pages back to the site database. The randomly picked

site uses general search engine facility to find center pages and

other relevant sites. Smart crawler first extract links on the

page then download these pages and analyze these pages to

decide whether the links are relevant or not. Following

algorithm is used for reverse searching:

Algorithm

Input: seed sites and harvested deep websites.

Output: relevant sites.

1 while # of candidate sites less than a threshold do

2 // pick a deep website

3 site = getDeepWebSite(siteDatabase,seedSites)

4 resultP age = reverseSearch(site)

5 links = extractLinks(resultP age)

6 for each link in links do

7 page = downloadPage(link)

8 relevant = classify(page)

9 if relevant then

10 relevantSites = extractUnvisitedSite(page)

11 Output relevantSites

12 end if

13 endfor-each

14 end while

3) Incremental site Prioritizing:Incremental site prioritizing is

used to achieve broad coverage on websites. It records the

learned pattern of deep sites and forms the path for crawling.

Basic knowledge is used to initialize both rankers such as site

ranked and link ranker. Unvisited sites given to site frontier

later prioritize by site ranked and added to the list fetched site.

Two queues are used to classify out of site links such high

priority queue and low priority queue respectively. High

priority queue consist of out of site links which are classifieds

relevant and judge by form classifier and low priority queue

consist of links that are only judged as relevant. Algorithm for

Incremental site Prioritizing is given below:

Algorithm:

Input: Site Frontier.

Output: searchable forms and out-of-site links.

1 HQueue=SiteFrontier.CreateQueue(HighPriority)

2 LQueue=SiteFrontier.CreateQueue(LowPriority)

3 while siteFrontier is not empty do

4 if HQueue is empty then

5 HQueue.addAll(LQueue)

6 LQueue.clear()

7 end

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 2, February 2018

 All Rights Reserved © 2018 IJSEM 159

8 site = HQueue.poll()

9 relevant = classifySite(site)

10 if relevant then

11 performInSiteExploring(site)

12 Output forms and OutOfSiteLinks

13 siteRanker.rank(OutOfSiteLinks)

14 if forms is not empty then

15 HQueue.add (OutOfSiteLinks)

16 end

17 else

18 LQueue.add(OutOfSiteLinks)

19 end

20 end

21 end

3) Site Frontier: Site Frontier fetches the homepage

URLsfrom the site database which is further ranked by Site

Ranker to prioritize the highly relevant sites. Finding out-of-

site links from visited web pages may not be enough for the

Site Frontier.

4) Adaptive link learner: Site ranker and link ranker are

controlled by Adaptive link learner. The feature space is

decided for deep websites and links known as FSS and

FSLrespectively. The Site Ranker is improved during crawling

by an Adaptive Site Learner, which adaptively learns from

features of deep-web sites (websites containing one or more

searchable forms) found. The Link Ranker is adaptively

improved by an Adaptive Link Learner, which learns from

theURL path leading to relevant forms.

5) Site Ranker: Site ranker is used to rank unvisited site from

the deep website. There are two parameters that are used for

ranking mechanism are Site Similarity and Site Frequency.

Site Similarity depends on the topic similarity between the

known deep site and new site. Site Frequency is the

occurrence of the site in another website.

6) Site Classifier: The high priority queue is for out-of-site

links that are classified as relevant by Site Classifier and are

judged by Form Classifier to contain searchable forms. If the

site is the judge as atopic relevant then site crawling process is

started otherwise the new site is picked from site frontier.

B. Stage 2: In-Site Exploring –After finding most relevant

sites in stage 1 stage 2 perform the in-site exploration to find

searchable forms.

1) Link Frontier: Link frontier takes sites as inputs which are

classified by site classifier. Link frontier mainly works for

finding links withincenter pages. Criteria for stopping early

are given as Crawling Strategies: Mainly two crawling

strategies are present Stop early and Balance link prioritizing.

Stop Early:

SC1: when reached maximum depth.

SC2: maximum crawling pages in each depth are reached.

SC3: Predefined numbers of forms are found at each depth.

SC4: No searchable forms till threshold value.

Balance link prioritizing: Here, link tree is constructed. The

rootnode is the selected site and internal leaf node is each

directory present on the website.

2) Link Ranker: Link Ranker prioritizes links so that

SmartCrawler can quickly discover searchable forms. A high

relevance score is given to a link that is most similar to links

that directly point to pages with searchable forms.

3) Page Fetcher: Page Fetcher directly fetches out a center

page of the website.

4) Candidate Frontier: The links in web pages are extracted

into Candidate Frontier. The working of candidate frontier is

similar as site frontier.

5) Form Classifier: Form classifier filters out non-searchable

and irrelevant forms. The HIFI strategy is used to filter forms.

HIFI consists of two classifiers, Searchable form classifier

(SFC)and domain-specific form classifier(DSFC). SFC is

domain independent and it filters out the non-searchable

forms. It uses C4.5 algorithm for classification. DSFC is

domain dependent and finds out the domain dependent form.

Discuses Support vector machine.

6) Adaptive Link Learner: The Link Ranker is adaptively

enhanced by an Adaptive Link Learner, which gains from the

URL way prompting applicable structures.

7) Form Database: Form database contains a collection of

sites; it collects all data which got input from Form Classifier.

At long last the outcome got is the most significant structures

are acquired in profound web interfaces which are the coveted

aftereffect of the proposed framework.

VI. CONCLUSION

The savvy crawler is a compelling structure for the profound

web. In this approach, we have accomplished wide scope for

profound web and productive creeping. Savvy crawler s two-

phase crawler comprising site situating by the turn around

seeking with focus pages and on-site investigating comprises

versatile connection positioning and connection tree for the

more extensive scope.

VII. ACKNOWLEDGEMENTS

I offer my thanks towards my guide Prof. Ms. Padmapani P.

Tribhuvan in light of his direction I have finished my work

attractively

ISSN (Online) 2456 -1304

International Journal of Science, Engineering and Management (IJSEM)

Vol 3, Issue 2, February 2018

 All Rights Reserved © 2018 IJSEM 160

REFERENCES

[1] https://en.wikipedia.org/wiki/Web_crawler

[2]AbhirajDarshakar, Crawler intelligence with Machine

Learning and Data Mining integration, Pune Institute of

Computer Technology, Katraj, Pune, India (ICCCA2015)

ISBN:978-1-4799-8890-7/15/$31.00 ©2015 IEEE 849

[3] Shruti Sharma and Parul Gupta, The Anatomy of Web

Crawlers ISBN:978-1-4799-8890-7/15/$31.00 ©2015 IEEE

[4] Cho, J. and Garcia-Molina, H. 2003. Estimating frequency

of change.ACM Transactions on Internet Technology 3, 3

(August).

[5] Cho J and Hector Garcia-Molina, “The evolution of the

Web and implications for an incremental crawler”, Prc. Of

VLDB Conf., 2000.

[6] Xiang Peisu, TianKe and Huang Qinzhen, A Framework of

Deep Web Crawler.

[7] JUNGHOO C, HECTOR GM, and LAWRENCE P.

Efficient crawling through URLordering. Proceedings of the

Seventh

[8] MirelaPirnau, Considerations on the functions and

importance of a web crawler, ECAI 2015 - International

Conference – 7th Edition Electronics, Computers, and

Artificial Intelligence 978-1-4673-6647-/15/$31.00©2015

IEEE

[9] Keerthi S. Shetty, SwarajBhat and Sanjay Singh, Symbolic

Verification of Web Crawler Functionality and Its Properties,

2012 International Conference OnComputerCommunication

and Informatics (ICCCI -2012), Jan.10–12,2012, Coimbatore,

INDIA

[10] Feng Zhao, Jingyu Zhou, Chang Nie, Heqing Huang, Hai

Jin, SmartCrawler: A Two-stage Crawler for Efficiently

Harvesting Deep-Web Interfaces,DOI

10.1109/TSC.2015.2414931, IEEE Transactions on Services

Computing.

https://en.wikipedia.org/wiki/Web_crawler

