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Abstract: Human aging research now crosses all areas of physiology and biology. Human age prediction is applied in many real-

world areas like forensic art, passport renewal, border security, finding a missing person or criminal, preventing vending machines 

from selling products, e.g., alcohol, tobacco, to under-aged individuals etc. Incredible changes found in human body during the 

craniofacial growth and behavioral pattern. This paper presents a study on various physiological and biological approaches used to 

predict human age. In this paper we discussed many interesting studies of these approaches and given a thorough analysis of 

problems in human age prediction. 
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I. INTRODUCTION 
 

Forensic Sciences is the recent area of applied research. Its 

value and importance as an assessment tool have risen 

exponentially as the needs for an informed opinion on the 

human age for the most judicial system. Human age is an 

important classifier in the most such systems, criminals and 

their victims, human trafficking, passport renewal, border 

security, finding a missing person, preventing vending 

machines from selling products, e.g., alcohol, tobacco, to 

under-aged individuals and many more human-computer 

interfaces [1-4]. We studied physiological and biological 

feature descriptors for human age prediction. In analyzing the 

aging system, it is necessary to predict the changes accurately 

in appearance resulting from the effects of aging. It must 

retain the identity of the person that is the viewer of an image 

must be able to see that it is the original person aged by a set 

amount. In this paper, we categorized age estimation features 

into two, physiological and biological. Physiological features 

include shape changes in overall appearance resulting from 

bone, cartilage, teeth, sagging, color changes resulting from 

aging and textural changes resulting from voice, gait, 

wrinkling, skin elasticity. Biological features include 

Deoxyribonucleic Acid (DNA), fingerprint, iris, face, 

palmprint, hand vein, palm vein, finger vein, periocular, ear, 

hand geometry, retina, sclera, Electrocardiograph (ECG), 

Electroencephalograph (EEG), whole blood and odor/scent. 

This study considers some of the above mentioned and more 

common circumstances that result in individuals. 

 

II. PHYSIOLOGICAL FEATURE DESCRIPTORS 

 

Teeth: 

Forensic odontology which is direct or indirect application of 

age estimation [5]. Various tooth dimensions are measured to 

estimate the age with ±2 weeks by both methods. Best 

estimation can be done with vertical dimension of tooth i. e. 

the height of tooth. It is found that upper tooth dimensions 

called crown measurements such as Labio-lingual (LL), 

Masio-Distal (MD), and Tooth Height (TH) gives more 

accurate results by direct method. Indirect method can be a 

computerised tomography (CT) digital image [6]. 

 

This type of estimation mostly done in non-adult, infants and 

juvenile remains in forensic laboratory. In addition with 

dental development and eruption, bone fusion (ossification) 

or skeletal maturation and size features also considered for 

estimating the age. 

 

Speech/voice: 

 

Many physiological changes results from the childhood to 

adult growth of larynx and vocal folds [7-10]. Acoustic and 

prosodic features, specific combinations of plosives and 

vowels, these are relatable to the physical age of the speaker. 

In a speech signal, Voice Onset Time (VOT) is the period 

between the release of a plosive and the onset of vocal cord 

vibrations in the production of the following sound. Voice 

Offset Time (VOFT), on the other hand, is the period 

between the end of a voiced sound and the release of the 

following plosive. Factors affect the voice such as 

surrounding environment, jitter differences, Age, height, 

weight, physical and psychological health status of the 

speaker affect a variety of physical characteristics such as the 

size, tension and agility of the vocal cords, the length of the 

vocal tract, the power and resonance of the voice source, i.e. 

the lungs, the size and shape of the resonant cavities, muscle 

response in the vocal apparatus, and many other such factors. 

Due to this it is less possible to identify age from only voice 

of speaker. 
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Handwriting/Signature: 

Most of the Handwriting based proposed system [11,12] used 

to predict the gender and handedness of human being. 

Features such as Directions, curvatures, tortuosities, chain 

codes, and edge-based directional features can predict the age 

ranges. Handwritten text images segmented into the number 

of cells. Gradient Local Binary Patterns (GLBP) and 

Gradient feature are computed and concatenated to constitute 

the image feature factor. With the help of SVM classifier age 

ranges can be predicted. 

 

Language dependency is the most important factor which 

affects to age estimation. Other factors are gender, left 

handed or right handed; databases IAM dataset and KHATT 

corpus, QUWI dataset 14% handwritings were predicted age 

for seven different age groups [13, 14]. 

 

Gait: 

Human gait means a person's manner of walking. Very few 

in literature [15-18] have worked on Gait based features to 

estimate the human age. Gait pattern significantly changes 

with the advancing age. It is observed that Gait speed 

decreases the increased human age. Stride based properties, 

reduced velocity, shorter step length and variable increased 

step timings are the characteristics considered for identifying 

the age. Walking surface is mattered in this type of approach 

[19, 20]. 

 

Facial image: 

Among all approaches [21-36] face images are easily 

available evidences for the age estimation. Social networking 

websites, criminal database images provides many related 

images. For children, main appearance change is the shape 

change caused by craniofacial growth, For adults facial aging 

due to skin wrinkles and anthropometry/shape and texture, 

color, ethnicity are considered. Craniofacial growth helps in 

identifying young adults whereas loss in facial muscle 

elasticity, wrinkles on forehead, near cheek bones and next to 

eyes identify old age person. Problem arises with the face 

alignment; sideway face, blurred face, motion face and 

rotation of the image, illumination variations, pose variations, 

facial expressions etc. Other obstacles are change in hairstyle 

changes the face appearance, beard, and goggles/glasses. 

Simple method to tackle this problem is age synthesis i. e. 

generating the faces like in age progression. Sometimes it 

may not work due to limited training sample size data. 

MORPH Database, FGNET, FERNET database are most 

commonly used databases in recent studies. These databases 

directly consider age ranges/groups for age estimation. 

 

 

 

III. BIOLOGICAL FEATURE DESCRIPTORS 

 

MRI: 

In Magnetic Resonance Imaging (MRI), human brain, the 

image can be segmented into gray matter (GM), white matter 

(WM), and cerebrospinal fluid (CSF) regions [37, 38]. 

Number of streamlines calculated as a proxy of connection 

strength between two regions using Diffusion Tensor 

Imaging (DTI). Structural connectivity networks based on 

DTI a weighted sum of the structural connectivity matrix for 

each subject as a raw score, where the weight of each 

connection was predefined as a correlation coefficient 

between edge weights and age over all subjects in the 

training group. Then, the raw score is converted to a 

predicted age with either linear or non-linear regression. It is 

useful for early detection of Alzheimer’s disease. 

 

Whole blood: 

Blood is one of the most often encountered and valuable 

traces found at a crime scene. Raman spectroscopy [39] was 

successful in species identification and blood ageing under 

laboratory conditions. The proposed spectral processing 

model [40,41] assumes a homogeneous blood stain with a 

constant thickness. These assumptions cause some deviations 

when compared to the reflectance spectrum measured in 

reality because of non homogeneity of thickness. 

Hemoglobin derivatives such as HbO2, MetHb and HC 

fraction measurements in blood stains considered as a 

function of time to estimate the age. Color of blood changes 

from red to dark brown factors that affects in whole blood 

age estimation. The accuracy of age estimates decreases with 

the age of the blood stain. Thus, to determine small 

differences in age, spectroscopic measurements should be 

performed as soon as possible after the crime. Environmental 

circumstances, humidity and temperature influence the speed 

of the chemical reactions within blood stains. 

 

Skeletal Information: 

Skeleton, hand-wrist bones, medial clavicle bones are used in 

such approaches to estimate the age. Tanner Whitehouse 

(TW) method is scoring method [42,43] developed in 1962 

based on hand-wrist of an individual between 1 to 21 years of 

age. Maximum 20 individual bones are studied in hand-wrist 

and their different combinations of radius, ulna, and selected 

metarphal. This method cannot be applied for every 

individual because of verity of population like Japanese, 

Chinese, and German etc. 

 

The study of medial clavicle [44-46] concentrates on 

radiographic data and Computed Tomography (CT) scans. In 

application of Schemeling method anterior and posterior 

radiographic imaging of medial clavicle is carried out at 
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fusion stage. With the help of CT, it is concluded that medial 

clavicle is valid means of determining the minimum age in 

legal cases. 

 

This type of approach mostly used in adults upto 40 Years 

age. It is very difficult in senior or older age adults age 

between 60-80 years by traditional method because of 

missing or decaying the bone information. 

 

Fingerprint: 

Morphological features such as ridges thickness, size or 

amount of pores, curvelet domain are the main area in 

fingerprint based estimation. Very less papers [47-49] are 

observed on fingerprint and study done for finding mostly the 

age groups of children, young and adults. Latent fingerprint 

features extracted are binary pixels, mean pixel, standard 

deviation. Problems faced in healing stages of wounds on 

fingers, luminescence behavior, degradation using chemical 

methods, chromatography, mass spectrometry and various 

surface types. Smooth, plain, non-porous and well reflecting 

surfaces like mirrors, glass, displays could give nearly 

accurate results. 

 

Methodology Used: 

Various classification and regression techniques [50-58] are 

used in both physiological and biological approaches. 

Multiple linear regressions (MLA), Principal component 

analysis (PCA), Klemera and Doubal’s method (KDM) are 

commonly used methods. 

Age estimation evaluation parameters; Mean Absolute Error 

(MAE), Cumulative Score (CS) and Accuracy is calculated 

after the training phase in mapping of testing feature vector. 

 

Recurrent Neural Networks (RNN) [59] and Convolutional 

Neural Networks (CNN) [60-69] architectures are used in age 

estimation. RNN focuses on face aging pattern whereas CNN 

deals with our multiclass classification problems like 

demographic estimation such as age, gender, and ethnicity, 

face alignment via landmark detection, face rotation, and face 

verification, in face recognisation and age estimation. CNN 

has gained great success in the past few years. 

 

IV. CONCLUSION: 

 

In this paper, we studied many physiological and biological 

feature descriptors for human age estimation. These 

approaches have their own advantages and disadvantages and 

various applications. We discussed factors that affects to 

these approaches. Most of literature defines facial images are 

good and easily available source for age estimation. We 

studied that every approach is not suitable and doesn’t 

provide accurate age estimation. Facial images using CNN 

attracts attention towards image recognisation and can give 

more accurate results regarding age estimation. For accurate 

results we can use various combinations of above discussed 

approaches. 
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