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Abstract—The notion of contra continuous functions was introduced by Dontchev. In this paper we apply the notion of Ω* - open 

sets in topological space to present and study a new class of functions called almost contra-Ω*gα-continuous functions as a new 

generalization of contra continuity. Furthermore, we obtain basic properties and preservation theorems of almost contra-Ω*gα-

continuity and investigate the relationship between almost contra-Ω*gα-continuity and Ω*gα-regular graph. 

 

Index Terms— M-Ω*gα-closed map, Almost contra-Ω*gα –continuity, Ω*gα-regular graph 

 

1. INTRODUCTION 

       Dontchev[ 3 ] introduced the notions of contra-

continuity in topological spaces.   

He defined a function f : X→Y is contra continuous if the 

preimage of every open set of Y is closed in X. Recently 

Ganster and Reilly[ 6 ] introduced a new class of functions 

called regular set connected functions(in 1999). Jafari and 

Noiri[ 7 ] introduced contra-pre-continous functions. 

Almost contra-pre-continuous functions were introduced 

by Ekici[ 4 ]. J.Mercy and I.Arockiarani[ 12 ]introduced 

On Ω*-closed sets and Ωp-closed sets in topological 

spaces. In this paper we introduce and study a new class of 

functions called almost contra-Ω*gα -continuous functions 

which generalize classes of regular set connected [6] contra 

continuous [ 3 ] and perfectly continuous[ 13 ] functions. 

Moreover, the relationship between almost contra-Ω*gα -

continuity and Ω*gα -regular graphs are also investigated. 

 

2. PRELIMINARIES 

 

        Throughout this paper,spaces (X,τ) and 

(Y,σ)or(Simply X and Y) always mean topological spaces 

on which no separation axioms are assumed unless 

explicity stated. For a subset A of (X,τ),cl(A)and int (A) 

represent the closure of A and interior of A with respect to 

τ respectively. 

 

DEFINITION 2.1. A subset A of a topological space (X,τ) 

is said to be preopen[ 11 ] 

(resp. preclosed) if Ant(cl(A))(resp.cl(int(A) A)). 

 

DEFINITION 2.2. A subset A of a topological space (X,τ) 

is said to be regular open[ 15 ] 

(resp. regular closed) if A=int(cl(A))(resp.A=cl(int(A))).  

 

DEFINITION 2.3. A subset A of a topological space (X,τ) 

is said to be α-closed[ 14 ] 

(resp. α-closed) if Cl(Int(Cl(A)))  A(resp. A 

nt(Cl(Int(A))).  

 

DEFINITION 2.4. The intersection of all α-closed sets 

containing A is called α-closure of A and is denoted by α-

cl(A).  

 

DEFINITION 2.5. The α-interior of A is defined by the 

union of α-open sets contained in A and is denoted by α-

int(A). 

 

DEFINITION 2.6. A subset A of a topological space (X,τ) 

is said to be generalized  α-closed set[ 10 ]( briefly gα-

closed ) if α-cl(A)U whenever AU and U is α-open.  

 

DEFINITION 2.7. A function f : (X,τ)→ (Y,σ) is called  

1. Contra-continuous [3 ] if f
 -1

( V) is closed in 

(X,τ) for every open set V of (Y,σ). 

2. Regular set connected[ 6 ] if f
 -1

( V) is clopen in 

X for every V RO(Y). 

3. Perfectly-continuous[ 13 ] if f
 -1

( V) is both open 

and closed in (X,τ) for every   open set V of 

(Y,σ). 

4. Almost-continuous[ 16 ] if f -1( V) is open in X 

for every regular open set V of (Y,σ). 

 

DEFINITION 2.8. A subset A of a topological space (X,τ) 

is said to be πgα –closed[ 1 ]  

if α-cl(A)U whenever AU and U is π - open. 

 

DEFINITION 2.9. A function f : (X,τ)→ (Y,σ) is called 

πgα –continuous[ 2 ] if f
 -1

( V) 

is πgα -open in (X,τ) for every open set V of (Y,σ). 
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DEFINITION 2.10. A function f: (X,τ)→ (Y,σ) is said to 

be almost contra-πgα –continuous[ 8 ] if f
 -1

( V) ε 

πGαC(X,τ) for every Vε RO(Y,σ). 

 

DEFINITION 2.11. A subset A of a topological space 

(X,τ) is said to be Ω*-closed[ 12 ]  

if pcl(A)nt(U), wheneverU and U is pre-open in 

(X,τ). 

 

3. ALMOST CONTRA-Ω*gα -CONTINUOUS 

FUNCTIONS 

 

DEFINITION 3.1. 

 A subset A of a topological space (X,τ) is said to be  

        (a) Ω*gα –closed if α-cl(A)U whenever AU and 

U is Ω*-open. 

        (b) Ω*gα – open if X-A is Ω*gα –closed. 

The family of all Ω*gα –closed sets of X (resp. Ω*gα – 

open sets) are denoted by  

Ω*GαC(X,τ) (resp. Ω*GαO(X,τ)). 

 

DEFINITION 3.2. 

 A function f : (X,τ)→ (Y,σ) is called 

1. Ω*gα -continuous if f
 -1

( V) is Ω*gα -open in (X,τ) 

for every open set V of  (Y,σ). 

2. Almost-Ω*gα -continuous if f
 -1

( V) is Ω*gα -open 

in X for every regular open set V of (Y,σ). 

3. Contra- Ω*gα -continuous if f
 -1

( V) is Ω*gα -closed 

in (X,τ) for every  open set V of (Y,σ). 

4. M- Ω*gα-open (resp. M- Ω*gα –closed) if image of 

each Ω*gα -open set      

  (resp. Ω*gα –closed) is Ω*gα-open(resp. Ω*gα –closed).   

 

DEFINITION 3.3 : 

 A function f: (X,τ)→ (Y,σ) is said to be almost contra-

Ω*gα -continuous if f
 -1

( V) ε Ω*GαC(X,τ) for every Vε 

RO(Y,σ). 

 

THEOREM 3.4 :  

 Let (X,τ) and (Y,σ) be topological spaces. The following 

statements are equivalent for a function f : X→Y. 

1. f is almost contra-Ω*gα -continuous. 

2. f
 -1

( F)  Ω*GαO(X,τ) for every F  RC(Y,σ). 

3. for each x  X and each regular closed set F in Y 

containing f(x), there exists  a Ω*gα -open set U in 

X containing x such that f(U) F. 

4. for each x  X and each regular open set V in Y not 

containing f(x), there exists  a Ω*gα -closed set K in 

X not containing x such that f 
-1

(V) K. 

5. f
 -1

(int(cl(G))  Ω*GαC(X,τ) for every open subset      

G of Y. 

6. f
 -1

(cl(int(F))  Ω*GαO(X,τ) for every closed subset   

F of Y. 

 

PROOF: 

(1)  (2) : Let F RC(Y).Then Y-F RO(Y,σ). 

By (1), f
 -1

(Y-F) =X- f
 -1

(F)  Ω*GαC(X,τ). 

This implies f
 -1

(F)  Ω*GαO(X,τ). 

(2)  (1) : Let V RO(Y,σ). 

Then Y-V RC(Y,σ).By(2) f
 -1

( Y-V)=X- f
 -1

(V)  

            Ω*GαO(X,τ). 

This implies f
 -1

(V)  Ω*GαC(X,τ). 

(2)  (3) : Let F be any regular closed set in Y containing 

f(x).By (2), f
 -1

( F)  Ω*GαO (X,τ) and x  f
 -1

( F). 

Take U= f
 -1

( F).Then f(U) F. 

(3)  (2) : Let F  RC(Y,σ) and x  f
 -1

( F).From (3), there 

exists a Ω*gα -open set Ux in X containing x such that  

Ux  f
 -1

( F).We have f
 -1

( F)= Ux . 

Thus , f
 -1

( F x  f
 -1

( F)  is Ω*gα -open. 

(3)  (4): Let V be a regular open set in Y not containing 

f(x). Then Y-V is a regular closed set containing f(x). 

 By (3) there exists a Ω*gα -open set U in X containing x 

such that f(U)Y-V.  

Hence U f
 -1

( Y-V) X- f
 -1

(V) and thenf
 -1

(V) X-U. 

Take K=X-U.  

We obtain a Ω*gα -closed set K in X not  Containing x. 

(4)  (3): Let F be regular closed set in Y containing f(x). 

Then Y-F is a regular open set   in Y not containing f(x). 

By (4) there exist a Ω*gα -closed set K in X not containing 

x such that f
 -1

( Y-F)K.  

This implies X- f
 -1

(F) K  X-K  f
 -1

( F)  f (X-

K)F. Take U=X-K. 

Then U is a Ω*gα -open set in X containing x such that         

f(U)  F. 

(1)  (5):  Let G be an open subset of Y.Since int(cl(G)) is 

regular open, then by(1)  

                   f
 -1

 (int(cl(G)))   Ω*GαC(X,τ). 

(5)  (1):  Let V RO(Y,σ).Then Vis open in Y.By (5) f
 -1

 

(int(cl(V)))  Ω*GαC(X,τ)  f
 -1

( V)  Ω*gα -closed in 

(X,τ). 

(2) (6)  The proof is obvious from the definitions.  

 

REMARK 3.5: The following diagram holds.  

 

Perfectly continuous     Contra continuous     

 Contra- Ω*gα -continuous  

                 

   

 

Regular set connected                                         Almost 

Contra Ω*gα -continuous 
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None of the implications is reversible for almost Contra 

Ω*gα -continuity as shown by the following examples. 

 

EXAMPLE 3.6 : Let X = {a,b,c}, τ ={Ф, X,{a}} and σ ={ 

Ф, X,{b},{c},{b,c}}.  

Then the identity function f: (X,τ)→ (X,σ) is almost contra-

Ω*gα -continuous  but not regular set connected.   

 

EXAMPLE 3.7 : Let X = {a,b,c,d}, τ ={X,Ф, {a},{a,c}, 

{a,d},{a,c,d}} and  σ ={X, Ф,{a}{a,b},{a,c,d}}. 

 Then the identity function f: (X,τ)→ (X,σ) is almost  

Contra-Ω*gα -continuous but not contra-Ω*gα -continuous. 

 

EXAMPLE 3.8: Let X = {a,b,c}, τ ={X,Ф,{a,b}} and σ 

={X, Ф,{a},{a,b}}. Then the identity function f: (X,τ)→ 

(X,σ) is contra-Ω*gα -continuous  but not contra-

continuous. 

 

THEOREM 3.9: Suppose that Ω*gα -closed sets are 

closed under finite intersection. 

If f: X→Y is almost contra-Ω*gα -continuous function and 

A is Ω*gα -open subset of X, Then the restriction f/A: 

A→Y is almost contra-Ω*gα -continuous.   

PROOF: Let F RC(Y). Since f is almost contra-Ω*gα -

continuous then f
 -1

(V)  Ω*GαO(X,τ). Since A is Ω*gα -

open in X if follow that (f/A)
 -1

(F) = A∩ f
 -1

(F))   

Ω*GαO(A,τ). Therefore, f/A is almost contra-Ω*gα -

continuous function. 
 

REMARK 3.10: Every restriction of an almost contra-

Ω*gα -continuous function is not necessarily almost 

contra-Ω*gα -continuous. 

 

EXAMPLE 3.11 : Let X = {a,b,c,d}, τ ={ Ф, 

X,{a},{d},{a,d},{c,d},{a,c,d}} and 

σ ={Ф, X, {b},{c},{b,c}}.  

Then the identity function f: (X,τ) → (X,σ) is almost 

contra-Ω*gα -continuous but if A = {a,b,c },where A is not  

Ω*gα -open in (X,τ) and  τA ={Ф, {a,b,c},{a},{c},{a,c}} is 

the relative topology on A induced by τ , then  

f/A : (A,τA) → (X,σ) is not almost contra-Ω*gα -

continuous. Note that {a,b,d} is regular closed in (X,τ) but 

that (f/A)
-1

{a,b,d} = A{a,b,d}={a,b,c}{a,b,d}={a,b} is 

not  

Ω*gα -open in (A,τA).            

 

DEFINITION 3.12: A cover  = Uα : α ε I  of subsets 

of X is called a Ω*gα -cover if Uα is Ω*gα -open for each 

α  I . 

 

THEOREM 3.13: Suppose that Ω*GαO(X,τ) sets are 

closed under finite intersection. 

 Let f: X→Y be a function and  = Uα : α ε I  be a  

Ω*gα -cover of X . 

 If for each α ε I, f/Uα is almost contra-Ω*gα -continuous, 

then f: X→Y is almost contra-Ω*gα –continuous.    

PROOF: Let V RC(Y).Since f/Uα is almost contra-Ω*gα 

-continuous function,  

(f/Uα)
 -1

(V)  Ω*GαO(Uα). Since Uα  Ω*GαO(X), by the 

result if U is Ω*gα -open in X and V is Ω*gα -open in X, it 

follows (f/Uα)
 -1

(V)) ε Ω*GαO(X) for each α ε I. Then  

f
 -1

(V) = (f/Uα)
 -1

(V) ε Ω*GαO(X). This gives f is almost 

contra-Ω*gα continuous    α ε I function. 

     

    I   

THEOREM 3.14: Let f: X→ Y and let g : X→ X Y be 

the graph function of f defined by g(x)=(x,f(x)) for every x 

ε∈X. If g is almost contra-Ω*gα -continuous then f is 

almost contra-Ω*gα -continuous.   

PROOF: Let V RC(Y), then X  V = X cl(int(V) = 

cl(int(X)cl(int(V) = cl(int(X V)). 

Therefore X  V RC(X Y). Since g is almost contra-

Ω*gα -continuous, g
 -1

(X V) ε Ω*gα -open in X.  

This implies f
 -1

( V) = g
 -1

(X V) ε Ω*gα -open in X. Thus, 

f is almost contra-Ω*gα -continuous.   

  

THEOREM 3.15: Let f: X→ Y and g: Y→ Z be function. 

Then, the following properties hold: 

1) If f is almost contra-Ω*gα -continuous and g is regular 

set connected, then gof : X→ Z is almost contra-Ω*gα -

continuous and almost Ω*gα -continuous. 

2) If f is almost contra-Ω*gα -continuous and g is perfectly 

continuous then gof : X→ Z is Ω*gα -continuous and 

contra-Ω*gα -continuous. 

3) If f is almost contra-Ω*gα -continuous and g is regular 

set-connected then gof : X→ Z is almost contra-Ω*gα -

continuous almost Ω*gα -continuous. 

PROOF: Let V RO(Z) Since g is regular set connected g
 -

1
(V) is clopen in Y. Since f is almost contra-Ω*gα -

continuous, f
 -1

(g
 -1

(V))= (gof)
 -1

(V) is Ω*gα -open and  

Ω*gα -closed. Therefore gof is almost contra-Ω*gα -

continuous and almost Ω*gα -continuous. (2) and (3) can 

be obtained similarly. 

   

THEOREM 3.16: If f: X→ Y is a surjective M-Ω*gα -

open and g: X→ Z is a function such that gof: X→ Z is 

almost contra-Ω*gα -continuous,then g is almost contra-

Ω*gα -continuous. 

PROOF : Let V be any regular closed set in Z. Since gof is 

almost contra-Ω*gα -continuous,(gof)
 -1

(V) )  Ω*gα -open 

in (X,τ). 
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Since f is surjective , M-Ω*gα -open map,f((gof)
 -1

(V)) = 

f(f
 -1

(g
 -1

(V)) = g
 -1

(V) is Ω*gα -open.Therefore g is almost 

contra-Ω*gα -continuous. 

 

THEOREM 3.17: If f: X→ Y is a surjective M-Ω*gα -

closed map and g: X→ Z is a function such that gof: X→ Z 

is almost contra-Ω*gα -continuous,then g is almost contra-

Ω*gα -continuous. 

PROOF: Similarly as the previous theorem. 

 

THEOREM 3.18: If a function f: X→ Y is almost contra-

Ω*gα -continuous and almost continuous then f is regular 

set-connected. 

PROOF: Let V RO(Y). Since f is almost contra-Ω*gα -

continuous and almost continuous f
 -1

(V) is Ω*gα -closed 

and open. Hence f
 -1

(V) is clopen. Hence f is regular set-

connected.     

 

DEFINITION 3.19: A filter base Λ is said to be Ω*gα -

convergent (resp. rc-convergent) to a point x in X if for any 

U Ω*gα -open in X containing x (resp.U RC(X)) there 

exist a B  Λ Such that B U.   
 

THEOREM 3.20: If a function f: X→ Y is almost contra-

Ω*gα -continuous, then for each point x  X and each filter 

base Λ in X Ω*gα -converging to x, the filter base f(Λ) is 

rc-convergent to f(x).  

PROOF: Let x  X and Λ be any filter base in X Ω*gα -

converging to x. Since f is almost contra-Ω*gα -continuous 

then for any V RC(Y) containing f(x) there exist U  

Ω*gα -open in X containing x such that f(U)V. Since Λ 

is Ω*gα -converging to x, there exist a B  Λ such that B 

U.This means that f(B) V and therefore the filter base 

f(Λ) is rc-convergent to f(x).  

 

Note that a function f: X→ Y is almost contra-Ω*gα -

continuous at x if each regular closed set F in Y containing 

f(x), there exist Ω*gα -open set U in X containing x such 

that f(U) F.   

 

THEOREM 3.21 : Let f: X→ Y be a function and x  X. If 

there exist U Ω*gα -open in X such that x  U and the 

restriction of f to U is almost contra-Ω*gα -continuous at x 

then f is almost contra-Ω*gα -continuous at x.  

PROOF: Suppose that F  RC(Y) containing f(x). Since f / 

U is almost contra-Ω*gα -continuous at x, there exists V 

Ω*gα -open set U in X containing x such that 

f(V)=(f/U)(V) F. Since U Ω*gα -open in X containing x 

it follows that V Ω*gα -open in X containing x. This 

shows clear that f is almost contra-Ω*gα -continuous at x. 

 

 

4. THE PRESERVATION THEOREMS 

         

In this section, we investigate the relationships among 

almost contra-Ω*gα -continuous  functions,separation 

axioms,connectedness and compactness. 

 

DEFINITION 4.1: A space X is said to be weakly 

Hausdorff [ 19 ] if each element of X is an intersection of 

regular closed sets. 

   

DEFINITION 4.2 : A space X is said to be Ω*gα -To if 

for each pair of distinct points in X there exists a Ω*gα -

open set of X containing one point but not the other. 

 

DEFINITION 4.3: A space X is said to be Ω*gα -Tl if for 

each pair of distinct points x and y in X there exists a Ω*gα 

-open sets U and V containing x and y respectively such 

that y U and x V.  

  
DEFINITION 4.4: A space X is said to be Ω*gα - 

Hausdorff if for each pair of distinct points x and y in X 

there exists U   Ω*gα -open in (X,x) and V  Ω*gα -open 

in (Y,y) such that U∩V=ф. 

 

THEOREM 4.5: If f: X→ Y is an almost contra-Ω*gα -

continuous injection and Y is weakly Hausdorff then X is 

Ω*gα -Tl. 

PROOF : Suppose that Y is weakly Hausdorff .For any 

distinct points x and y in X there exist V, W RC(Y) such 

that f(x)  V , f(y)  W , f(x) W, f(y) V .Since f is 

almost  

Ω*gα -continuous, f
 -1

( V) and f
 -1

( W) are Ω*gα -open 

subsets of X such that  x  f
 -1

( V) and y  f
 -1

( W) ,y f
 -1

( 

V) ,x  f
 -1

( W),This shows that X is Ω*gα -Tl.  

 

DEFINITION 4.6 : A topological space X is called Ω 

*gα-ultra  connected if every two non-void Ω*gα -closed 

subsets of X intersect. 

 

DEFINITION 4.7 :  A topological space X is called hyper 

connected [ 20 ] if every open set is dense. 

 

THEOREM 4.8 : If  X is Ω*gα -ultra connected and  f: 

X→ Y is almost contra-Ω*gα -continuous and surjective, 

then Y is hyper connected.  

PROOF : Assume that Y is hyper connected. Then there 

exist an open set V such that V is not dense in Y.Then there 

exist disjoint non-empty regular open subsets B1 and B2  in 

Y    

namely B1=int cl(V) and B2 =Y-cl(V). Since f is almost 

contra-Ω*gα -continuous and surjective, A1 = f
 -1

(B1)  and 

A2 = f
 -1

(B2) are disjoint non-empty  Ω*gα -closed subsets 
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of X which is a contradiction to the fact that X is Ω*gα -

ultra connected.Hence Y is  

hyper connected. 

 

DEFINITION 4.9 : A space X is called Ω*gα - connected 

provided that X is not the union of two disjoint non-empty  

Ω*gα -open sets. 

 

THEOREM 4.10 : If f: X→ Y is almost contra-Ω*gα -

continuous surjection and X is  Ω*gα - connected then Y is 

connected. 

PROOF: Suppose that Y is not connected.Then there exist 

non-empty disjoint open sets V1 and V2  such that Y=V1 

V2 . Therefore V1 and V2  are clopen in Y.Since f is almost 

contra-Ω*gα -continuous, f
 -1

( V1) and f
 -1

( V2) are disjoint 

and X = f
 -1

( V1) f
 -1

( V2) which is a contradiction to the 

fact that X is  Ω*gα - connected. Hence Y is connected. 

 

DEFINITION 4.11 : A space X is said to be  

a) Ω*gα -closed if every Ω*gα -closed cover of X has a 

finite subcover.  

b) CountableΩ*gα -closed if every countable cover of X 

byΩ*gα -closed sets has a finite subcover.  

c) Ω*gα -Lindelof if every cover of X by Ω*gα -closed sets 

has a countable cover.   

d) Nearly compact if every regular open cover of X has a 

finite subcover.[ 17 ] 

e) Nearly countably compact if every countably cover of X 

by regular open sets has a finite subcover.[ 5 , 18 ] 

f) Nearly Lindelof [ 4 ] if every cover of X by regular open 

sets has a countable subcover.   

THEOREM 4.12: Let f: X→ Y be an almost contra-Ω-

continuous surjection. Then the following statements hold. 

a) If X is Ω*gα -closed then Y is nearly compact. 

b) If X is Ω*gα -lindelof then Y is nearly lindelof. 

c) If X is countably-Ω*gα -closed,then Y is nearly 

countably compact.  

PROOF: Let Vα : α  I be any regular open cover of Y. 

Since f is almost contra-Ω*gα -continuous, then  f
 -1

( Vα) : 

α  I  is a  Ω*gα -closed cover of  X.Since X is Ω*gα -

closed there exist a finite Io of I such that X=  f
 -1

( Vα) : 

α  Io.Thus we have Y= Vα : α  Ioand Y is nearly 

compact. 

Proof of b) and c) are analogue to a).   

 

DEFINITION 4.13 : A space X is said to be Mildly  Ω*gα 

-compact if every  Ω*gα -clopen cover of X  has a finite 

subcover. 

a) Mildly countably-Ω*gα -compact if every Ω*gα -

clopen  countable cover of X  has a countable 

subcover. 

b) Mildly Ω*gα -Lindelof if every Ω*gα -clopen 

cover of X has a countable subcover. 

 

THEOREM 4.14: If f: X→ Y is an almost contra-Ω*gα -

continuous and almost contra-Ω*gα -continuous 

surjection.Then 

a) If X is mildly Ω*gα - compact then Y is nearly compact.  

b) If X is mildly countably- Ω*gα -compact then Y is 

nearly countably compact. 

c) If X is mildly Ω*gα - lindelof then Y is nearly Lindelof. 

PROOF: (a) V RO(Y). Then since f is almost contra-

Ω*gα -continuous almost Ω*gα -continuous, f
 -1

( V) is 

clopen.Let Vα : α  I be any regular open cover of Y. 

Then  f
 -1

( Vα) : α  I  is a clopen cover of X. Since X is 

mildly Ω*gα - compact,there exist a finite subset Io of I 

such that X=  f
 -1

( Vα) : α  Io Hence Y is nearly 

compact. 

Proof of b) and c) are similar to a).  

  

5. Ω*gα -REGULAR GRAPHS 

     

     In this we define Ω*gα -regular graphs and investigate 

the relationships between Ω*gα -regular graphs and almost 

contra-Ω*gα -continuous functions. 

 

DEFINITION 5.1: For a function f: X→ Y the subset 

(x,f(x) / x∈XX  Y is called the graph of f and is 

denoted by G(f)[ 4 ] 

 

DEFINITION 5.2 :  A graph G(f) of a function f: X→ Y is 

said to be Ω*gα -regular if for each (x,y)  X  Y-G(f), 

there exist a Ω*gα -closed set U in X containing x and V 

RO(Y) containing y such that (U  V) ∩ G(f) = ф. 

 

LEMMA 5.3: The following properties are equivalent for 

a graph G(f) of a function  

1. G(f) is Ω*gα -regular. 

2. for each point (x,y)  X  Y-G(f) there exist a Ω*gα -

closed set U in X containing x and V RO(Y) containing y 

such that f(U) ∩V = ф. 

PROOF : It follows from definition and the fact that for 

any subsets UX,VY(U  V)∩ G(f) = ф iff f(U) ∩V = 

ф. 

 

THEOREM 5.4: If f: X→ Y is almost contra-Ω*gα -

continuous and Y is T2 , then G(f) is   

Ω*gα -regular graph in X  Y. 

PROOF :  Let (x,y)  X  Y-G(f). It follows that f(x)  y. 

Since Y is T2 , there exist open sets V and W containing 

f(x) and y respectively such that V∩W= ф.We have 

int(cl(V)) ∩ 
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int(cl(W)) = ф. Since f is almost contra-Ω*gα -continuous, 

f
 -1

 (int(cl(V))) is  Ω*gα -closed in X containing x . Take U 

= f
 -1

 (int(cl(V))). Then f(U) int(cl(V)) Therefore  

f(U) ∩ int(cl(W)) = ф. Hence G(f) is Ω*gα -regular. 

 

THEOREM 5.5 : Let  f: X→ Y have Ω*gα -regular graph 

G(f). If f is injective, then X is Ω*gα -Tl. 

PROOF :  Let x and y be any two distinct points of  

X.Then we have (x,f(y)) X  Y-G(f). By definition of 

Ω*gα -regular graph,there exist a Ω*gα -closed set U of X 

and  

V ε RO(Y) such that (x ,f(y))  U  V and U∩ f
 -1

 (V) = 

ф. Therefore we have 

Y U.Thus y  X-U. xX-U. X-U   Ω*gα -open in (X,τ) 

implies X is Ω*gα -Tl.   

 

THEOREM 5.6: Let f: X→ Y have Ω*gα -regular graph 

G(f) If f is surjective, then Y is weakly T2. 

PROOF: Let y1 and y2 be any two distinct points of  Y. 

Since f is surjective f(x) = y1 for some x  X and (x , y2 ) 

X  Y-G(f).By lemma 5.3,there exist a Ω*gα -closed set 

U of X and F  RO(Y) such that (x, y2)  U  F and f(U) 

∩F =ф. Hence y1 F. Then y2Y- F  RC(Y) and y1  Y- 

F. This implies that Y is weakly T2. 
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