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Abstract— Approximation of the solution of the differential equations is done by Bernoulli polynomial. Bernoulli polynomial and 

operational matrix of differentiation were used in reducing differential equations into algebraic equations. The method and its 

application is demonstrated through illustrative examples and found that the method is computationally attractive. The Bernoulli 

polynomial method has been applied to compare the numerical solution of differential equations with the existing method of Rationalized 

Haar Function. 
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I. INTRODUCTION 

Differential equations have lots of application in both the 

science and engineering field. Differential equations (DEs) 

are used in different fields of mathematical modeling. 

Regularly, obtaining an analytical solution for some DEs is 

not possible. Thus, few numerical techniques were 

introduced to calculate approximate solutions for such 

equations. Such as Legendre polynomial[1], Chebyshev 

polynomial [2], Hermite polynomial [3,4], Bernoulli 

polynomial [5, 6]. Recently, a new method developed to 

solve numerical problems by the concept of graph theory 

called Hosoya polynomial, one can refer for graph theory 

terminologies and developed method in [7, 8, 9, 10, 11, 

12,13]. Wavelet based numerical method, such as Modified 

wavelet full-approximation scheme [14], Bernoulli wavelet 

[15], Hermite wavelet [16] and Rationalized haar 

functions[17]. Bernoulli polynomial is applied for the 

numerical solution for integral equations [18]. This article, 

gives the Bernoulli polynomial method for the numerical 

solution of differential equations and comparison with the 

existing method(RHF)[17].  

II. PROPERTIES OF BERNOULLI POLYNOMIAL AND 

FUNCTION APPROXIMATION 

Bernoulli polynomial is defined by [5, 6],  
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Where              are Bernoulli numbers which are 

in a sequence of signed rational numbers emerging in the 

series expansion of trigonometric functions given by, 
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The sequence of Bernoulli numbers is   
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The Bernoulli Polynomials are,  
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Function approximation: A function 
2( ) [0,1]f x L

is 

expanded as: 
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where A and B(t) are 1N   matrices given by: 
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1. Method of Solution 

Here, let us take the differential equation 
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time variable t (0 ≤ t < 1). 

The approximate solution of function y(t) using Bernoulli 

polynomials method is give by, 

Step 1: Approximate y(t) as truncated series given in Eqn. 

(2.1).  
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Further, differentiate Eqn. (3.3)  
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Step 2: Substitute Eqn. (3.3), (3.4) & (3.5) in (3.1), we 

obtain 
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Step 3: Substituting the collocation point 
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(3.6),  
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Step 4: Using the initial condition 

00 )0(&)0( yyyy 
 at t = 0 obtained the first two 

system of equations with unknown remaining system of 

equations is obtained by Eqn. (3.7). This gives the number of 

system of linear or nonlinear equations with unknowns.  

Step 5: Solving these system of equations by using the 

Newton iterative scheme, we obtain the unknown Bernoulli 

coefficients ‘A’, substitute in (3.3), which gives the required 

approximate solution of (3.1).  

III. NUMERICAL RESULTS 

Here, we consider a few illustrative examples from the 

literature to test the accuracy and efficiency of the results: 
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where, ey
 is exact solution and ay

 is approximate 

solution. 

Here, comparison of the numerical solutions with exact 

solutions and the existing method is Rationalized Haar 

functions (RHF) [17]. 

Illustration 1. Consider linear differential equations, 

)1,0[,0)(2)(  ttytty
           (4.1) 

with initial condition 

2
)0(,0)0(  yy

 

and the exact solution is 
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the proposed technique, solving the Eqn. (4.1) with initial 

condition is reduced into system of algebraic equations and 

the simplification gives the required approximate solution 

which is compared with the existing method(RHF). Table 1 

gives the comparison of the present method with existing 

method. Fig. 1 shows the numerical solution with exact 

solution 

Table 1. Comparison of present method with existing 

method(RHF) 

t Exact 

RHF 

at k = 8 

BPM 

at N = 8 

Error(R

HF) 

Error(B

PM) 

0 0 0 0 0 0 

0.1 0.112463 0.11244 0.112461 2.29E-05 1.44E-06 

0.2 0.222703 0.22268 0.222701 2.26E-05 1.78E-06 

0.3 0.328627 0.32861 0.328624 1.68E-05 2.26E-06 

0.4 0.428392 0.42837 0.428389 2.24E-05 3.79E-06 

0.5 0.5205 0.52047 0.520495 2.99E-05 5.03E-06 

0.6 0.603856 0.60384 0.603851 1.61E-05 5.17E-06 

0.7 0.677801 0.67779 0.677796 1.12E-05 5.16E-06 

0.8 0.742101 0.74208 0.742095 2.10E-05 6.13E-06 

0.9 0.796908 0.79689 0.796901 1.82E-05 7.08E-06 

1 0.842701 0.84269 0.842694 1.08E-05 6.98E-06 

 

 
Figure 1: Numerical solution with exact solution 

 

Illustration 2. Consider, 
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with initial condition 
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and the exact solution is 
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 By the proposed 

technique, solving the Eqn. (4.2) with initial condition is 
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reduced into system of algebraic equations. On simplifying, 

which we get the required exact solution which is compared 

with the existing method(RHF). Table 2 gives the 

comparison of the present method with existing method. Fig. 

2 shows the numerical solution with exact solution. This 

shows the efficiency of the proposed method is very accurate. 

 
Figure 2: Numerical solution with exact solution 

 

Table 2. Comparison of present method with existing 

method(RHF) 

t Exact 

RHF at 

k = 8 

BPM 

at N 

= 5 Error(RHF) Error(BPM) 

0 0 0 0 0 0 

0.1 0.01 0.01002 0.01 2.00E-05 0 

0.2 0.04 0.04003 0.04 3.00E-05 0 

0.3 0.09 0.09002 0.09 2.00E-05 0 

0.4 0.16 0.16003 0.16 3.00E-05 0 

0.5 0.25 0.25002 0.25 2.00E-05 0 

0.6 0.36 0.36002 0.36 2.00E-05 0 

0.7 0.49 0.49003 0.49 3.00E-05 0 

0.8 0.64 0.64001 0.64 1.00E-05 0 

0.9 0.81 0.81 0.81 0 0 

1 1 1 1 0 0 

 

IV. CONCLUSION 

The application of Bernoulli polynomial to numerical 

solution of differential equations of second order and its 

properties are significant to cut down the differential 

equations to system of algebraic equations. Illustrations are 

given to check the efficiency, accuracy and validity of the 

proposed method and analyzed with one of the existing 

method  Rationalized haar function (RHF). 
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